

Department of Conservation

Te Papa Atawhai

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT Ministry for Primary Industries Manatū Ahu Matua

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN

Te Whare Wānanga o Otāgo NEW ZEALAND

OA in the Pacific: NZ Perspectives

Cliff Law NIWA/University of Otago

Current acidification of South Pacific waters

Surface pH

- decline in pH consistent with atmospheric CO₂ trend
- Similar pattern in North Pacific

Surface carbonate saturation

K. Hunter, M. Reid & K. Currie

Projected change in surface pH in South Pacific waters 10- 50°S

Lowest pH & fastest pH rate change for 50M years

S. Mikaloff-Fletcher, NIWA

Ocean Acidification is not just change in pH Winners and losers

Emiliania huxl

Are phytoplankton OA "winners" ?

Nitrogen fixers

Calcifying phytoplankton

Nitrogen fixation may increase by 30-120% under low pH...

...but south of 30°S N fixation is not affected

Reduction in carbonate production in coccolithophores under low pH.....

....but currently increasing in NZ waters

Hutchins et al, 2009; Law et al, 2012

2100

Shifts in NZ coastal macroalgae communities under declining pH

Different physiology has implications for future ecosystem structure

Hepburn et al, 2011

Carbonate in the deep ocean

Impact on NZ Cold Water Corals

Important habitat CWCs require carbonate

<25% of current coral locations will be above the ASH in 2100

implications for deep-sea habitat and biodiversity

IPCC-S650 scenario; Orr et al (2005); Bostock et al (2013); Tracey et al (2011)

NZ Sea Urchin

NZ abalone (Paua)

Ocean acidification impacts on NZ coastal ecosystems

- Echinoderms and molluscs are keystone species in coastal marine ecosystems
- New Zealand asset/export values \$460M/\$260M
- Customary and recreational importance
- Vulnerable to decreasing carbonate resulting from ocean acidification

Green-lipped mussels

Flat oysters

Cockles

www.fish.govt.nz; Cooley et al, 2012

Sensitivity in echinoderm larvae

At lower pH:

Smaller larvae with malformation

Genes for energy metabolism & mineralization down-regulated

Decreased feeding efficiency= increased planktonic phase= reduced survival

Byrne et al (2013); O'Donnell et al (2010)

Influence of Ocean Acidification on Paua life stages

Malformed Paua larvae at low pH

Erosion of empty Paua shells at low pH; not observed in live juveniles

 indicates additional metabolic energy cost for shell maintenance

Early life stages may be bottlenecks for population success

V. Cummings, N.Z. Ministry for Primary Industries

CARIM Coastal Acidification: Rate, Impacts & Management

4-year multi-disciplinary project starting October 2015

RA1. Variability of coastal pH and the carbonate system

- pH variability and magnitude to guide impact manipulation experiments and future projections
- pH data to national OA network (NZOA-ON) & GOA-ON; publicly available

RA2. Sources and seasonality of low pH and carbonate in the Hauraki Gulf

pCO₂ (µatm)

Atmospheric CO₂ is not the only cause of coastal acidification

Budgets, dynamic models & seasonal carbonate maps will support mitigation and adaptation measures

Adapted from Sunda and Cai (2012)

RA3. Impacts of reduced pH on primary producers & ecosystem interactions

- Manipulation experiments in mesocosms with automated pH, T and light regulation
- Plankton primary production, composition, food quality and trophic interaction
- Calcifying Coralline algae mineralogy and growth rates; habitat for Paua settlement

RA4. Determine the acclimation potential of iconic species to future coastal acidification

Paua – All life stages

Snapper larvae behaviour

Multi-stressor manipulation facility

Greenshell Mussel – All life stages

Assess effect on egg/sperm quality, survival, growth, physiology, energetic costs and fitness, gene & protein expression

RA5: Selection in coastal species for resilience to low pH

- Assess larvae performance from pedigreed Paua & Greenshell Mussel families (NZ selective breeding programmes) under low pH
- Identify most vulnerable or resilient families reared to juvenile stage
- Examine the mechanisms that account for differences between families

RA6. Consequences of coastal acidification for key species

- Phytoplankton & productivity projections, and implications for coastal foodwebs
- Paua population forecast models (above)
- Greenshell Mussel Dynamic Energy Budget
- Snapper ecosystem effects population model

CARIM (Coastal Acidification: Rate, Impacts & Management)

A way forward for addressing Ocean Acidification in the Pacific Islands?

RA7. Communication and Outreach

- Annual Stakeholder Group meetings, & regular engagement with Iwi
- Media website, newsletters, Twitter & Facebook
- "Oceans Guardians" participatory science component for schools
- Science publications
- National OA workshops & international conferences;
- Final research synthesis report, and stakeholder workshop

Confounding Factors pH variability in coastal waters

Daily pH fluctuation may exceed range of future change

Consider natural short term fluctuations in organism response

Cornwall et al., 2013

Prediction of the impacts of OA is complicated by other changes

N.Z. Climate Change Atlas, Boyd & Law (2011)

Future distribution of habitat-forming Cold Water Corals in N.Z. waters

Topographical features, may be refugia for cold water corals

Present day

2100

Orr et al (2005); Bostock et al (2013); Tracey et al (2011); Tittensor et al (2009)