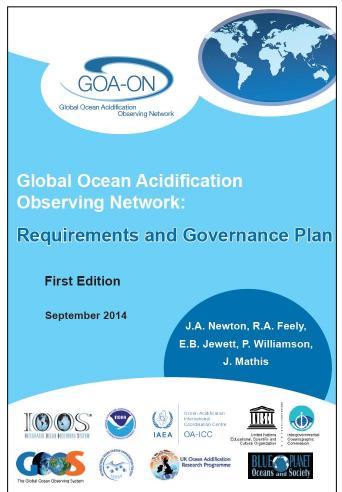
Global Ocean Acidification Observing Network

GOA-Or

Dr. Libby Jewett – Director, NOAA OA Program Co-chair of GOA-ON Executive Council Pacific Islands OA Workshop. October 2015

Global Ocean Observing System

Educational, Scientific and Cultural Organization Intergovernmental Oceanographic Commission



UK Ocean Acidification Research Programme BLUE PLANE Oceans and Societ

GOA-ON Plan now available

www.GOA-ON.org

OA is

a global condition with local effects

- We need local through global scale observations in order to get either correct
- This issue **demands our coordination**, networked skill, and open analysis

How was GOA-ON made?

GOA-ON Global Ocean Acidification Observing Network

- Two international workshops have been convened to establish a coordinated approach to build an integrated global observing network for ocean acidification
- The first workshop held at the University of Washington in June 2012, was attended by 62 participants from 23 countries.
- The second workshop, held at St. Andrews, UK, in July 2013 was attended by 87 participants from 26 countries.
- The third workshop is COMING. <u>May 8- 10,</u> <u>2016 in Hobart, Australia.</u>

GOA-ON will provide:

Approach and Goals

Detailed information about the GOA-ON background, design, implementation, and data strategy can be found here:

Global Ocean Acidification Observing Network: Requirements and Governance Plan (JA Newton, RA Feely, EB Jewett, P Williamson, J Mathis)

GOA-ON high-level goals:

Goal 1 - Improve our understanding of global OA conditions:

Determine status and spatial /
temporal patterns in carbon

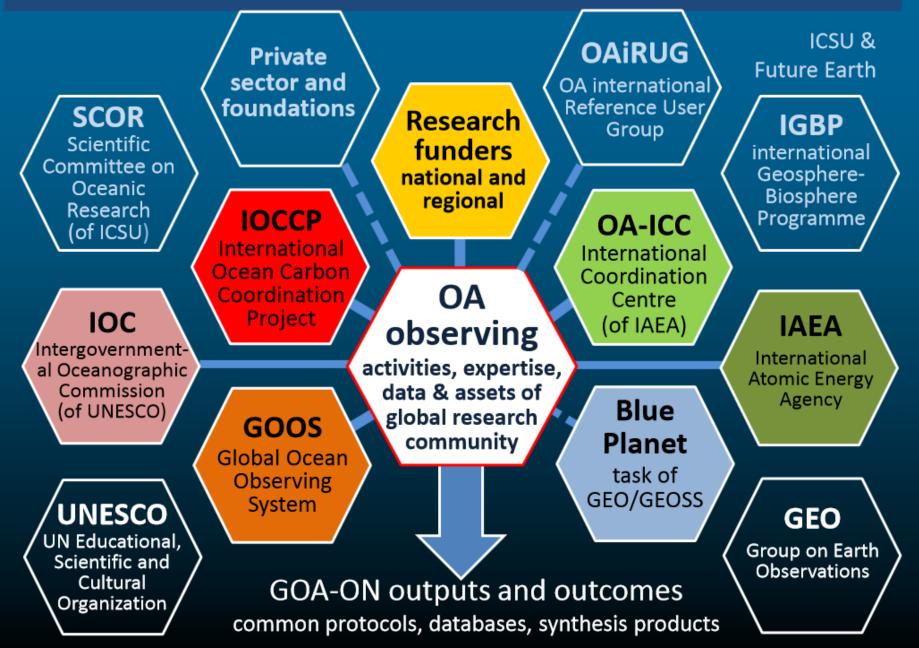
Interactive Map of Ocean Acidification Platforms

Building on the existing global oceanic carbon observatory network of repeat hydrographic surveys, time-series stations, floats and glider observations, and volunteer observing ships, the interactive map below offers the best information available on the current inventory of global OA observing platforms. This is a strong foundation of observations of the carbonate chemistry needed to understand chemical changes resulting from ocean acidification.

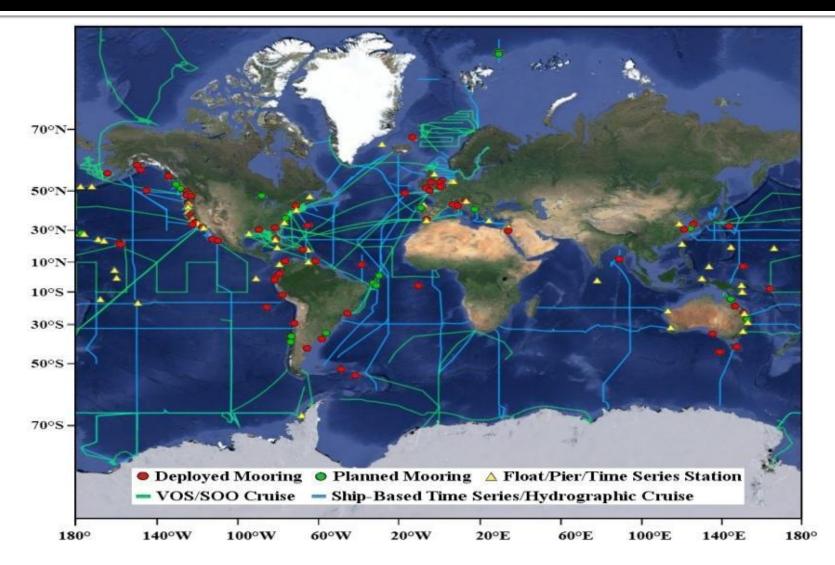
www.GOA-ON.org

An International Effort

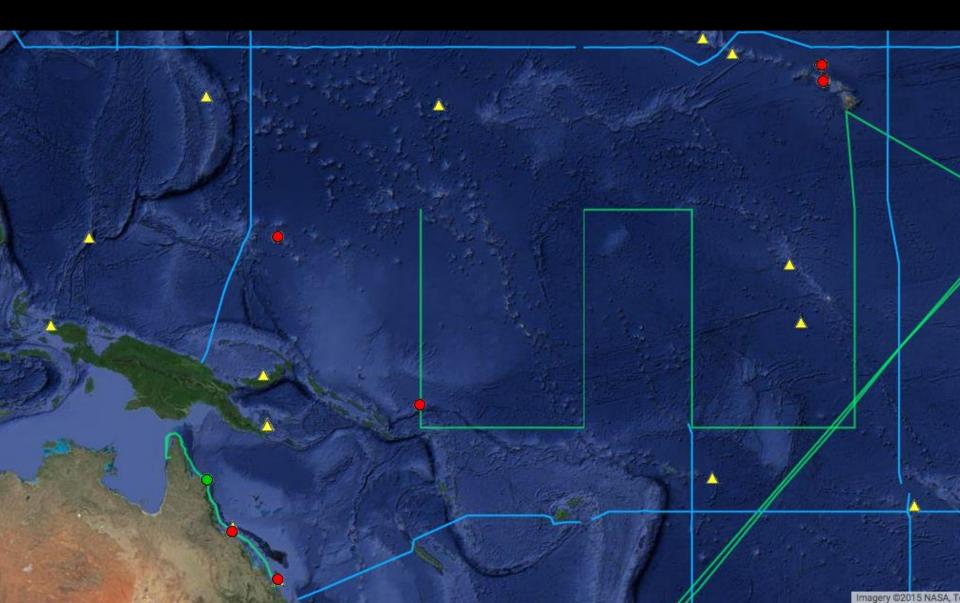
Network Members - Scientists from 30 countries are currently participating in the GOA-ON.


Workshops/Activities

► <u>GOA-ON 2012 Workshop, University</u> of <u>Washington ,Seattle, WA</u> attended by 62 participants from 22 countries


► <u>GOA-ON 2013 Workshop</u>, <u>St. Andrews, UK</u> attended by 87 participants from 26 countries

► <u>GOA-ON Side Event</u> at the GEO-X Plenary Session & 2014 Geneva Ministerial Summit <u>Flyer Leaflet</u>

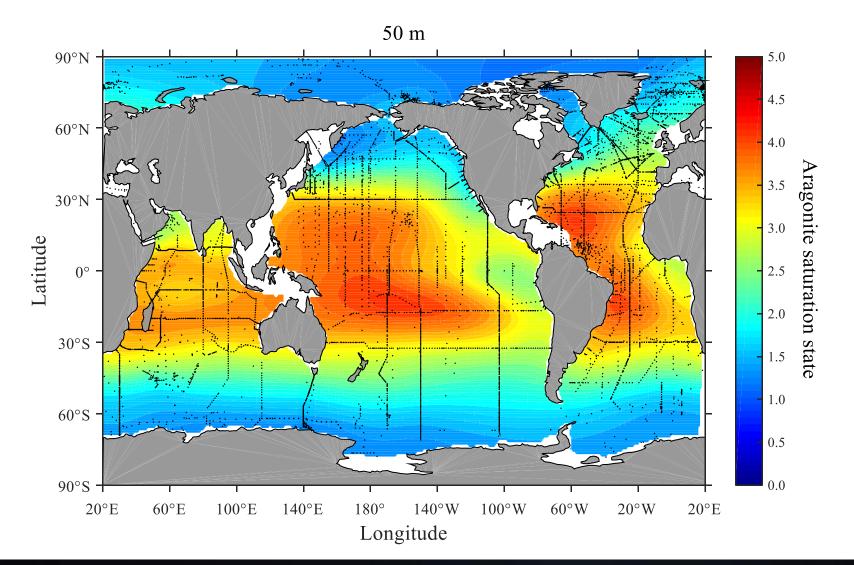

Global OA Observing **Network** wider connections

Global OA Observing Network

Close up of the Region

Interactive Map

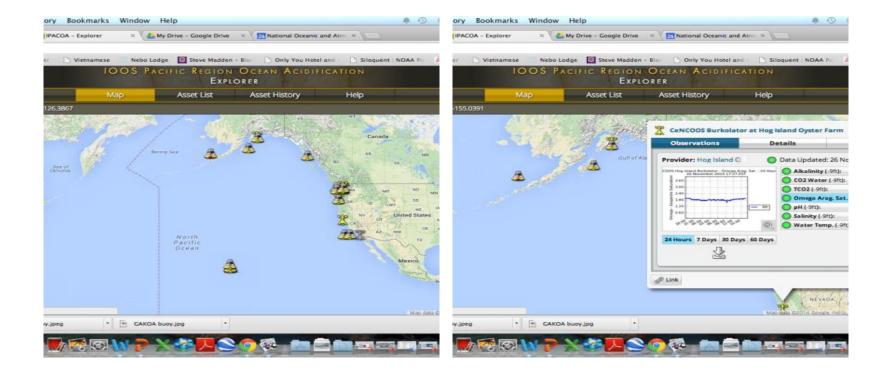
ellite


R/V Ka'imimoana

NOAA/PMEL

Project: pCO2 on Ships

Sponsor: NOAA Climate Program Office/Climate Observation Division Project Website: www.pmel.noaa/gov/co2/ Contact: Dr. Richard Feely, NOAA/PMEL (Richard.A.Feely@noaa.gov) Date and duration of deployment: 1996 to present Sensors: pC02, SST, DIC, nutrients. ×


Creating Global and Regional Data Products

Reference Year: 2000

Li-Qing Jiang et al., Biogeosciences 2015

Share Regional Data US West Coast OA Portal

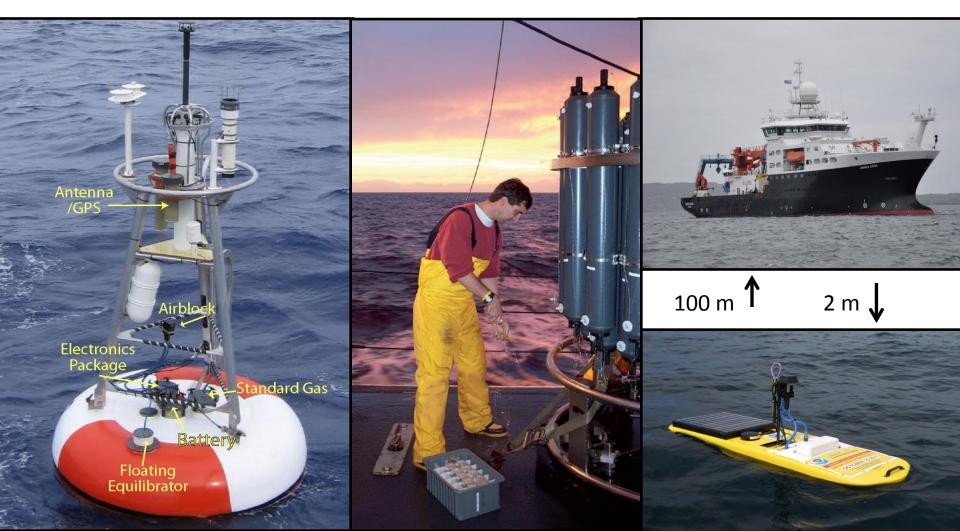
http://www.ipacoa.org/

To build the GOA-ON, the community has defined:

- The rationale, design, and locations of components for an international ocean acidification observing network, taking into account existing activities
- A minimum suite of measurement parameters
- A strategy for data quality assurance and for data distribution
- The *requirements for international programme integration*

Observations across various ecosystems:

- Tropical Seas
- Polar Seas
- Temperate Seas
- Shallow Coral Reefs
- Estuarine and Nearshore Systems



Utilizing various platforms:

- Ship-based surveys & volunteer observing ships
- Moorings & piers
- Gliders & floats

GOA-ON defined two data quality objectives:

- 'Climate data': of sufficient and defined quality to assess long term trends with defined level of confidence Detection of changes in OA state over multi-decadal timescales
- 'Weather data': of sufficient and defined quality to identify relative spatial patterns and short-term changes Mechanistic interpretation of the ecosystem response to local, immediate OA dynamics

Nested system design

 To address network goals, GOA-ON observations will be based on a nested design:

Level 1: critical minimum measurements

<u>Level 2:</u> measurements for integrated assessment to enhance interpretation

<u>Level 3</u>: measurements that are not yet fully ready for standardization; in development or evaluation

 Ecosystem responses will only be measured in a subset of total OA observation stations

GOA-ON has a nested system design

Coral reefs

Coasts & shelf seas

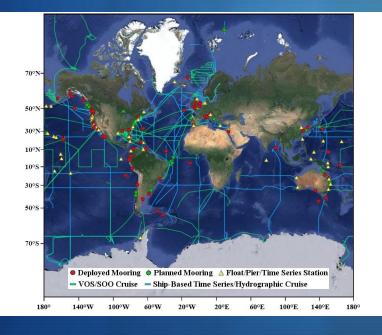
Open ocean

Goal 1 OA conditions	Goal 2 Ecosystem response	Goal 3 OA modeling	
<u>L1:</u> carbonate-system constraint, T, S, O, <i>fluorescence, irradiance</i>	<u>L1</u> : biomass/abundance of functional groups (phytoplankton zooplankton & microbes)	,	Inputs to models
<u>L2:</u> nutrients, bio-optics, transport, meteorology, trace metals	<u>L2</u> species; processes incl. growth, grazing & respiration	_	

Goal 2: Tropical Seas

- Phytoplankton and zooplankton biomass/abundance;
- sunlight (PAR);
- turbidity;
- colored dissolved organic material (CDOM, including via remote sensing)
- size fractionated chlorophyll;

Goals 1&2: Coral Reefs


How biology affects the Chemistry

- Biomass of biota
 - Corals or coralline algae, other photosynthesizers (macro-algae, seagrasses)
- Changes in net ecosystem processes
 - Calcification/dissolution (NEC: net ecosystem calcification)
 - Production/respiration (NEP: net ecosystem production).

How Chemistry affects the Biology

- Biota:
 - population structure of corals, macroalgae, urchins
 - biomass, population and trophic structure of cryptobiota
 - architectural complexity
- <u>Processes</u>: The NEP:NEC ratio, food supply rate and quality and bioerosion rates at specific sites.
- <u>Habitat</u>: Further characterization of the chemical habitat through sediment mineralogy/composition; organism mineral content; alkalinity anomalies; and the vertical profiles of saturation state over time (for cold-water corals)

Future Directions

- Scientific capacity in under served regions (people and equipment)
 - NZ/ SPREP investment in Pacific Islands.
 - South Africa and Mozambique
 - International Coordination Centre Capacity Building
- Developing Regional Networks
 - Latin America
 - Pacific Islands
 - Western Pacific
 - Africa
 - Pilot nodes where training can occur

Next Steps?

- Come to the Hobart Workshop. More information is on the Oceans in High CO2 World website.
- Visit us at: <u>www.GOA-ON.org</u>
- Create the Pacific Islands OA Network