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•	 Global climate models can 
simulate many aspects of climate, 
and generally give a reasonable 
representation of seasonal and 
interannual climate in the PCCSP 
region. Most models, however, 
show biases, such as a tendency 
for sea-surface temperatures 
along the equator to be too cold. 
Such biases must be taken into 
consideration when using the 
models for climate projections.

•	 The representation of the 
El Niño-Southern Oscillation 
(ENSO) in climate models has 
improved over the years but 
remains a challenge at the regional 
scale. For example, sea-surface 
temperature variability associated 
with ENSO tends to be too narrowly 
focused on the equator, too far to 
the west and variability away from 
the equator in the sub-tropical 
Pacific tends to be too small.

•	 Global climate models reproduce 
the observed pattern of the regional 
distribution of sea level reasonably 
well. Global climate models that 
include all factors that influence the 
climate generate similar temporal 
variability in global-averaged 
ocean thermal expansion to the 
observations, but a slightly smaller 
rate of rise over recent decades. 
Observations indicate sea level is 
currently rising at near the upper 
end of the projected range.

Summary

•	 The CSIRO Direct Detection, 
Genesis Potential Index and 
Curvature Vorticity Parameter 
projection methods generally 
performed well in reproducing 
the observed tropical cyclone 
climatology when applied to global 
climate models. 

•	 An evaluation of the performance 
of 24 global climate models has 
identified a set of 18 models which 
provide a reasonable representation 
of climate over the PCCSP 
region. These models are used for 
constructing projections of future 
climate for the PCCSP region and 
for individual Partner Countries in 
Chapters 6 and 7.

•	 Dynamical downscaling models 
have finer resolution and can be 
used to obtain information at 
regional scales, including over 
topography or where coastal effects 
are important. Since this is very 
computer-intensive, the output from 
only six global models has been 
downscaled and used to provide 
additional projections information in 
Chapter 7.

•	 Bias-adjustment of the sea-surface 
temperatures and increased 
atmospheric model resolution 
improves the representation of 
some aspects of the current climate 
in the downscaled simulations. 
Moreover, downscaled projections 
can provide useful complementary 
information to projections from 
coarser global climate models. 
However, there is no guarantee 
that the downscaled projections 
are actually more reliable than 
the projections from the coarser 
global models.
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To make scientifically robust and 
confident projections of the future 
climate, it first has to be demonstrated 
that global or downscaled climate 
models are sufficiently realistic in 
simulating the present climate. 
Whether a model is skilful in simulating 
the present climate will depend on 
its ability to represent the long-term 
average and seasonal cycle of 
various atmosphere and ocean fields 
(e.g. temperature, rainfall, wind, salinity 
and sea level); important regional 
large-scale climate features (e.g. 
Intertropical Convergence Zone (ITCZ), 
South Pacific Convergence Zone 
(SPCZ) and West Pacific Monsoon); 
the major components of climate 
variability on various timescales (e.g. 
the El Niño-Southern Oscillation 
(ENSO), Pacific decadal variability); 
extreme weather events (e.g. heat 
waves, heavy rain, tropical cyclones); 
and long-term trends. In addition, 
climate models should be stable and 
not exhibit substantial model drift 
(model drift refers to spurious trends 
in climate simulations that occur in the 
absence of any change in factors that 
might be expected to induce change).

5.1 Introduction

The level of agreement between 
model simulations and observations 
of the present climate is used as a 
method of assessing model reliability. 
It is assumed that a model which 
adequately simulates the present 
climate will provide more reliable 
projections of the future. As shown in 
this chapter, no one model is the best 
in representing all aspects of climate, 
and a range of models should be 
considered when making projections 
of future climate.

Because of the complexity of climate 
systems, and the wide range of 
climate change factors of interest to 
stakeholders, it is important that model 
evaluation considers a broad range 
of features, fields and processes – 
with a corresponding requirement for 
high quality observations. For some 
features (e.g. global gridded rainfall) 
more than one dataset is available, 
which can provide a useful measure of 
observational uncertainty. The various 
observational datasets used in this 
chapter (and publication) are described 
in Chapter 2 and listed (along with 
their abbreviations) in Table 2.2 for the 
atmosphere variables and Table 2.3 for 
the ocean variables.

The global climate models (CMIP3 
models) assessed in this chapter are 
listed in Table 4.1, along with model 
numbers and names used throughout 
this publication. Features of global 
climate models, such as resolution 
and representation of physical 
processes, are discussed in general 
in Section 4.3, along with details of 
the CMIP3 suite of experiments. Most 
analysis in this chapter is carried out 
with respect to the climate of the 
20th century experiments described 
in Section 4.3.1. Also described in 
Chapter 4 are the techniques used for 
dynamical and statistical downscaling 
and for the calculation of tropical 
cyclones and sea-level changes based 
on climate model output.

The performance of global climate 
models is evaluated for atmosphere 
variables, ocean variables, major 
climate features and patterns of 
variability and extremes in Section 5.2. 
The performance of dynamical and 
statistical downscaling is evaluated 
in Section 5.3. The simulation of 
tropical cyclones in climate models is 
evaluated in Section 5.4. A summary 
of the suitability of models for use 
in climate projections in the PCCSP 
region is provided in Section 5.5.
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Box 5.1: Summary of Intergovernmental Panel on 
Climate Change Comments on Model Strengths 
and Weaknesses

Climate models are based on the laws of physics and can reproduce many observed 
features of the current climate and past climate changes. Confidence in model 
simulations is higher for some climate variables (e.g. temperature) than for others 
(e.g. rainfall). Confidence is also generally higher for changes on continental or larger 
scales than for sub-continental and island scales.

Confidence in the reliability of global climate models for climate projections has 
improved, based on tests of their ability to represent:

•	 Present day average climate and year-to-year variability.

•	 Observed climate trends in the recent past.

•	 Extreme events, such as storms and heatwaves.

•	 Climates from thousands of years ago.

Models show significant and increasing skill in representing many important mean 
climate features, such as the large-scale distributions of atmospheric temperature, 
rainfall, radiation and wind, and of oceanic temperatures, currents and sea-ice cover. 
Patterns of climate variability that are generally well-simulated include the advance 
and retreat of the major monsoon systems, the seasonal shifts of temperatures, 
storm tracks and rain belts. Simulations that include estimates of natural and human 
influences can reproduce the observed large-scale changes in surface temperature 
over the 20th century, including the global warming that has occurred during the 
past 50 years.

However, there remain significant deficiencies in models, stemming largely from 
the need to represent in approximate form (parameterise) some small-scale but 
key physical processes, such as cloud physics, radiation and rainfall processes. 
Importantly, errors or biases remain in a number of aspects of the simulation of 
tropical rainfall, ENSO and the Madden-Julian Oscillation, and tropical ocean 
temperatures. Relatively small-scale events such as tropical cyclones and 
thunderstorms are less skilfully reproduced. Finer resolution models tend to produce 
more realistic simulations, although increased resolution alone does not reduce some 
important biases.

In summary, climate models provide credible quantitative estimates of future climate 
change, particularly at larger scales. Some deficiencies remain at smaller scales. 
There will always be a range of uncertainty in climate projections. People doing 
impact assessments based on climate model projections need to understand and 
incorporate this uncertainty.

(Summary based on information in Chapter 8 of the Working Group 1 contribution to 
the IPCC Fourth Assessment Report (2007)).
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In this section, the seasonal and annual mean climatology of the 24 CMIP3 models is 
compared with observations. First, key atmospheric variables are examined, then model 
ocean climatology is compared with observed ocean variables. The key features of mean 
climate and climate variability in the models are compared with observations, and finally 
the simulation of climate extremes is compared with the observed distribution of extremes.

5.2 Evaluation of CMIP3 Climate Models

5.2.1 Atmosphere 
Variables
In simulating the current climate, the 
CMIP3 models should ideally capture 
the observed mean state of the 
climate, the timing and strength of 
the seasonal cycle, and the location 
and magnitude of any spatial features. 
A number of statistics relevant to 
these aspects of a model simulation 
have been calculated (Table 5.1). 
Unless otherwise stated, the results 
presented for these statistics refer to 
the multi-model mean (plus/minus the 
inter-model standard deviation) of the 
all-observation test scores (i.e. the 
value obtained by averaging across the 
scores from all relevant observational 
datasets). These observational 
datasets include CMAP and GPCP for 
the rainfall analysis, and the ERA-40, 
NCEP/DOE R-2 and JRA25 datasets 
for surface temperature and wind 
(Table 2.2). A complete listing of the 
CMIP3 models that were assessed 
for each variable (i.e. the models that 
have monthly time scale data available 
for the climate of the 20th century 
simulation) is given in Appendix 1.

Table 5.1: Definition of the statistics used to assess the ability of the CMIP3 models to simulate surface air temperature, rainfall and 
the surface wind. Each statistic was calculated over the PCCSP region (as defined in Section 1.3) after interpolation to a common 
2.5° latitude/longitude grid.

Aspect assessed Statistical test Data required

Mean state (bias)
Bias (or difference - model minus observed) in the spatial 
average value (Ebias) 1980–1999 annual mean field

Mean state (error)
Grid point average of the magnitude of the difference 
between the model and observed field (Eabs)

Seasonal cycle (phase) Grid point average temporal correlation (rt) Spatial field containing 12-step time series 
of the1980–1999 mean value for each 
monthSeasonal cycle (amplitude)

Grid point average temporal standard deviation ratio 
(model/observed; σratio,t)

Spatial features (location) Monthly time step average spatial (or pattern) correlation (rp)

1980–1999 mean field for each month
Spatial features (amplitude)

Monthly time step average spatial standard deviation ratio 
(model/observed; σratio,x)

5.2.1.1 Surface Air 
Temperature

The vast majority of the CMIP3 
models show a cold bias throughout 
much the PCCSP region (Figure 5.1; 
Ebias= -0.8 ± 0.8°C), which is largely 
responsible for the multi-model 
mean grid-point error magnitude of 
Eabs = 1.0 ± 0.5°C. The models are 
able to capture the general surface 
air temperature spatial pattern, 
however they tend to exaggerate the 
intensity and westward extent of the 
cool equatorial surface air associated 
with the oceanic cold tongue 
(rp = 0.9 ± 0.1; σratio,x = 1.1 ± 0.1). 
The models also tend to slightly 
overestimate the amplitude of the 
seasonal cycle (σratio,t = 1.2 ± 0.3), 
however the phase of this cycle is 
relatively well represented (rt = 0.8 ± 0.1).

5.2.1.2 Rainfall

The main large-scale features of the 
climatological rainfall in the PCCSP 
region, including the high rainfall 
areas associated with the tropical 
convergence zones and West Pacific 

Monsoon, are clearly present in most 
CMIP3 model simulations (Figure 5.2 
and Section 5.2.3). However, 
discrepancies in the precise location 
of these simulated features generally 
lead to relatively large grid-point 
errors in the 1980–1999 annual 
mean rainfall field (Eabs = 1.8 ± 0.5 
mm per day) and are reflected in the 
spatial correlation values obtained 
for each month (rp = 0.7 ± 0.2). 
Given the pronounced differences 
between the CMAP and GPCP 
datasets with respect to the intensity 
of tropical rainfall (Yin et al., 2004; 
also see Figure 5.2 and discussion in 
Section 2.2.1), it is interesting to note 
that the amplitude of both the modelled 
seasonal cycle and spatial distribution 
of rainfall in the PCCSP region tends 
to compare more favourably with 
CMAP (σratio,t  = 1.1 ± 0.3 and 
σratio,x = 1.1 ± 0.2) than GPCP 
(σratio,t = 1.5 ± 0.4 and σratio,x = 1.5 ± 0.3). 
The models compare similarly to CMAP 
and GPCP with respect to their ability 
to capture the phase of the seasonal 
cycle (rt = 0.6 ± 0.1).



102 Climate Change in the Pacific: Scientific Assessment and New Research | Volume 1: Regional Overview

Figure 5.1: Climatological (1980–1999) annual mean 
surface air temperature (°C) for the multi-model mean 
(top left) and the ERA-40 reanalysis dataset (bottom 
left). The NCEP/DOE R-2 and JRA25 reanalyses are 
not shown, as they closely resemble ERA-40. Also 
shown is the difference (or anomaly): models minus 
ERA-40 (bottom right).

Figure 5.2: Climatological (1980–1999) annual mean 
rainfall (mm per day) for the multi-model mean (top) and 
for observational datasets GPCP (middle left) and CMAP 
(bottom left). Also shown is the difference (or anomaly): 
models minus GPCP (middle right) and models minus 
CMAP (bottom right).
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The multi-model grid point error 
magnitude for wind direction is 
Eabs = 14.7 ± 4.3°, however on a 
sub-regional scale errors larger than 
10° are typically confined to the region 
in and around Indonesia and Papua 
New Guinea. These directional errors 
may also arise from deficiencies in 
the simulation of the West Pacific 
Monsoon, however any mismatch 
between the model and reanalysis 
topography in the region would 
also be a factor. The models tend 
to underestimate the magnitude of 
the seasonal cycle in wind direction 
across the entire PCCSP region 
(σratio,t = 0.9 ± 0.2) and also show 
some difficulty in capturing the phase 
(rt = 0.7 ± 0.1) and spatial pattern 
(rp = 0.5 ± 0.1) of the seasonal cycle 
in wind direction. 

5.2.1.4 Summary: 
Atmosphere Variables

In summary, the CMIP3 models are 
able to capture the broad-scale 
characteristics of the 1980–1999 
average surface air temperature, 
rainfall and surface wind climatology. 
However they display some important 
deficiencies in simulating the finer 
details. In particular, the cold tongue 
bias influences the model simulated 
climate of Kiribati and Nauru, while 
many other Partner Countries are 
influenced by biases in the location of 
the tropical convergence zones (SPCZ 
and ITCZ) and the representation of 
seasonal wind reversals associated 
with the West Pacific Monsoon. 
The INM-CM3.0 and PCM models 
provide consistently poor simulations 
of the average climate across all 
atmospheric variables examined (Irving 
et al., in press). It is recommended 
that these models are not used 
for projections of future climate in 
Chapters 6 and 7 (Section 5.5).

5.2.1.3 Near-Surface Wind

The CMIP3 models tend to closely 
agree with observed climatological 
wind surface speed data (at 10 m 
above the ground) throughout most 
of the PCCSP region, except for the 
area immediately to the north and 
east of Papua New Guinea and the 
Solomon Islands (Figure 5.3). Over 
this area, the model tendency to 
overestimate the annual mean wind 
speed relates to model deficiencies in 
capturing the seasonal wind reversal 
associated with the West Pacific 
Monsoon (Section 5.2.3). Further, 
these sub-regional errors contribute 
greatly to the overall PCCSP region 
multi-model mean grid point error 
magnitude of Eabs = 0.9 ± 0.3 metres 
per second. The models have some 
difficulty in capturing the phase 
(rt = 0.7 ± 0.1) and spatial pattern 
(rp = 0.8 ± 0.1) of the seasonal cycle 
in wind speed.

Figure 5.3: Climatological (1980–1999) annual mean surface 
wind speed (metres per second) for the multi-model mean 
(top left) and the ERA-40 reanalysis dataset (bottom left). 
Also shown is the difference (or anomaly) in wind speed: 
models minus ERA-40 (bottom right). The NCEP/DOE 
R-2 and JRA25 reanalyses are not shown, as they closely 
resemble ERA-40. Arrows indicate wind direction, with length 
proportional to wind speed.
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5.2.2 Ocean Variables

5.2.2.1 Sea-Surface 
Temperature

Comparison of observed and 
multi-model mean sea-surface 
temperature (Figure 5.4) shows 
that important large-scale features 
are generally captured with some 
degree of fidelity in the simulations. 
These include: (1) the West Pacific 
Warm Pool, (2) the warm bands 
straddling the equator and (3) the 
cold tongue in the eastern Pacific. 
However, systematic errors are also 

Figure 5.4: Climatological (1980–1999) annual mean sea-surface temperature (°C) for the 
observed HadISST dataset (top) and the multi-model mean (middle). Also shown is the 
difference, i.e. models minus observations (bottom).

5.2.2.2 Sea-Surface Salinity

The large-scale observed features in 
sea-surface salinity are captured in 
the multi-model mean of the PCCSP 
region (Figure 5.6), in particular, the 
low salinity under the convergence 
zones, where high rainfall levels dilute 
the salinity concentration, and the high 
salinity in the south-eastern Pacific 
where there is low rainfall and high 
rates of evaporation. Examination of 
individual models shows very different 
sea-surface salinity patterns and a 
large spread in regional averages 
(Figure 5.5). While the majority of 
models have average salinities 
between 34.3 and 35.2 practical 
salinity units (psu) in the PCCSP 
region, three models (CSIRO-Mk3.5, 
UKMO-HadCM3 and PCM) have 
average salinities below 33.9 psu 
(Figure 5.5). The multi-model root 
mean square error for sea-surface 
salinity in the region is ~0.48 psu.

evident. The difference between the 
multi-model mean and observations 
of sea-surface temperature is ~0.7°C 
on average at any given location (root 
mean square error is 0.73°C). Across 
the equatorial region, this error is 
considerably larger, as the sea-surface 
temperature is too cool in the majority 
of models. Despite a zonal (east-west) 
sea-surface temperature difference 
that is close to observations in many of 
the models, the cold tongue extends 
too far into the western Pacific, 
thereby reducing the extent of the 
Warm Pool and making it generally 
too cold. This bias is also manifest in 

Considerable differences in 
sea-surface temperature distribution 
are evident across the models 
(Figure 5.5). Two models (GISS-ER 
and GISS-AOM) show little evidence 
of an equatorial cold tongue and 
consequently a lack of distinct 
convergence zones. This indicates 
a significant failing in their ability to 
properly capture tropical processes. 
In a few models (in particular 
INM-CM3.0 and BCCR-BCM2.0) 
the cold tongue reaches well into the 
western basin – a bias that adversely 
affects mean rainfall in the western 
Pacific region. Average sea-surface 
temperatures over the Pacific region 
are systematically too low, which 
also affects surface air temperatures 
(Figure 5.1). While two models are 
about 0.5°C too warm, the majority 
(including three of the flux-adjusted 
models) are more than 0.5°C too 
cold. Both the BCCR-BCM2.0 and 
CNRM-CM3.0 models are more than 
1.8°C too cold.

air temperatures and has implications 
for the wind distribution, the location 
of the atmospheric convergence, and 
hence rainfall.
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Figure 5.5: Average (1980–1999) 
PCCSP region sea-surface temperature 
and sea-surface salinity for individual 
CMIP3 models (numbered circles, see 
Table 4.1 for model numbers). The 
observed range (black box) spans two 
sea-surface temperature (SST) (HadISST 
and ERSSTv3) and two sea-surface 
salinity (SSS) (CARS06 and WOA05) 
observational datasets. Purple circles 
indicate flux-adjusted models 
(see the Glossary).

Figure 5.6: Climatological (1980–1999) 
annual mean sea-surface salinity (psu) 
for observed CARS06 dataset (top) and 
multi-model mean (middle). Also shown 
is the difference, i.e. models minus 
observations (bottom).
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5.2.2.3 Trends and Variability

An important test for climate models 
is how well they are able to simulate 
known climate variability on interannual 
time scales, and how well they can 
reproduce historical trends. Such an 
assessment is complicated by the fact 
that observations are often sparse 
(particularly prior to the mid-20th 
century) and often come from multiple 
sources, making it difficult to combine 
observations into a consistent record.

A comparison of observed PCCSP 
region sea-surface temperature 
trends with individual climate models 
shows that all the models simulate a 

warming over the latter half of the 20th 
century (Figure 5.7). However, there 
is considerable spread, with some 
models producing more than double 
the observed warming, and others 
showing a very weak warming. Despite 
this, the multi-model mean compares 
well with observations. This does 
not imply that the multi-model mean 
is necessarily the best predictor of 
future climate.

The Pacific Decadal Oscillation 
is important (Chapter 3) as it can 
enhance or suppress ENSO impacts 
on decadal time scales. While most 
models simulate a Pacific Decadal 
Oscillation reasonably well, a number 

of models underestimate its strength, 
and three models (BCCR-BCM2.0, 
GISS-AOM and GISS-ER) give a 
sea-surface temperature response to 
the Pacific Decadal Oscillation that is 
of the wrong sign (Figure 5.7).

In addition to appropriately simulating 
natural variability such as ENSO and 
the Pacific Decadal Oscillation, models 
should be able to respond realistically 
to changes in insolation and to major 
volcanic eruptions. All models (except 
MIROC3.2 (medres)) that include the 
effect of volcanoes correctly simulate 
a cooling in the PCCSP region 
associated with increased volcanic 
activity, although the response is 
generally considerably larger than 
observed (Figure 5.7). In addition, all 
models, (except for GFDL-CM2.1) that 
include changes in insolation, simulate 
a warming in the PCCSP region 
associated with increased insolation.

Figure 5.7: Sea-surface temperature 
trend (1950–2000) and the strength 
of sea-surface temperature variability 
associated with ENSO, Pacific Decadal 
Oscillation, volcanic and solar forcing 
for three observational datasets 
(HadISST, ERSSTv3b and Kaplanv2), 
the multi-model mean, and the CMIP3 
models. ENSO and Pacific Decadal 
Oscillation strength relate to the 
sea-surface temperature response in the 
Niño3.4 region, 5°N–5°S, 120°W–170°W 
(as both of these phenomena have 
very different regional responses) while 
other forcing and the sea-surface 
temperature trend relates to the full 
PCCSP region (as changes are regionally 
homogeneous). X indicates models that 
do not incorporate solar and/or volcanic 
forcing in the 20th century simulation. 
See Table 4.1 for model numbers.
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5.2.2.4 Sub-Surface Trends

Understanding what goes on beneath 
the ocean surface is fundamental to 
fully understanding climate variability 
and change. The ocean has absorbed 
about 90% of the total additional heat 
from global warming and about half of 
the CO2 emitted since industrialisation 
(Sabine et al., 2004). Its huge inertia 
means that changes are less subject 
to the short-term fluctuations that 
are ubiquitous for atmospheric 
properties. Hence ocean heat content 
and sea-level change is often a more 
reliable indicator of climate change. 
The ocean plays a central role in ENSO 
and longer-term variability and takes 
part in important feedback processes 
that modulate the rate of long-term 
atmospheric warming. Physical ocean 
processes such as mixing are also 
vital for bringing essential nutrients into 
the surface ocean. These nutrients 
maintain biological productivity and 
ultimately the fisheries that are so 
important for the region.

The sub-surface temperature 
trend (1950–2000) shows a 
surface-intensified warming in 
both the models and observations 
consistent with increased greenhouse 
gas concentrations (Figure 5.8). 
Counter-intuitively, there is also a 
region of cooling centred near the 
equator at about 200 m depth. This 
cooling is consistent with a weakening 
in the equatorial trade winds that 
(through ocean processes) cause 
the thermocline to become shallower 
(Han et al., 2006) lifting the deeper 
cold water upwards. While the 
observed warming-cooling pattern 
could be caused by natural variability 
(McPhaden and Zhang, 2004), the 
fact that it is reproduced in the climate 
models (albeit with reduced intensity) 
suggests that the pattern is, in part, 
related to increased greenhouse gas 
concentrations. This is consistent with 
atmospheric studies that attribute the 
weakening of the Walker Circulation 
and the associated Pacific trade 
winds to both natural variability and 
the influence of greenhouse gases 
(Power and Kociuba, in press).

5.2.2.5 Climate Model Drift

Climate models that include 
historical or projected increases 
in atmospheric greenhouse gas 
concentrations would be expected to 
exhibit a global warming trend, with 
associated changes in other climate 
characteristics (e.g. rainfall, circulation). 
Conversely, climate simulations with 
greenhouse gas concentrations held 
fixed (i.e. control simulations) would 
be expected not to exhibit long-term 
trends. Many models do, however, 
have trends in their control simulations 
as a result of imperfections in the 
representation of physical processes 
in the models. Such spurious trends 
are referred to as climate model drift 
(Power, 1995). This is problematic, 
as a model that exhibits drift within 
the control simulation will also exhibit 
similar drift in the historical and 
projection simulations. The model drift 
therefore erroneously affects any global 
warming signal in the model output. 
Drift must therefore be accounted for 
when it is large.

Figure 5.8: Linear trend across the equator at 165°E in sub-surface ocean temperatures based on the multi-model mean (right) and an 
observational reconstruction (left; Durack and Wijffels, 2010). Units are °C per 50 years; black contours every 0.2°C per 50 years.
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The typical error introduced by 
model drift (if not accounted for) in 
the simulated trend for the PCCSP 
region is shown in Figure 5.9. For 
most models, the trend associated 
with model drift is less than 20% of 
the simulated 1950–2000 sea-surface 
temperature trend. In one model 
(INGV-SXG) the drift error is particularly 
pronounced, exceeding 40%. Model 
drift introduces a greater error in 
rainfall, with most models showing 
an error of 10 to 40%. Two models, 
MRI-CGCM2.3.2 and INGV-SXG, have 
rainfall drift errors that exceed 60%. 
In general, INGV-SXG shows high 
levels of drift in all climate variables. 
In addition, it is not possible to 
correct for model drift for this model 
as a concurrent control simulation 
is unavailable.

Model drift becomes relatively less 
important for projections as the 
anthropogenic climate signal become 

larger. In addition, model drift tends 
to be randomly distributed across 
models (i.e. it will make a trend 
larger in some models and smaller in 
others). As a result, model drift tends 
to be negligible when considering 
multi-model means. Model drift is 
often most important in the ocean, 
particularly at greater depth. As a 
result, ocean model fields used in 
projections of ocean variables (other 
than sea level) have been corrected 
for model drift by subtracting the 
drift in the control experiment from 
corresponding projection simulations.

Globally, the modelled sea level 
reproduces the large-scale features 
of the observed pattern but some 
models have a higher correlation 
with the observations and a smaller 
root mean square error than others 
(not shown). For the tropical and 
sub-tropical Pacific basin, there is a 
similar level of agreement but some 
models have closer agreement with 
the observations (Figure 5.10). There is 
a smaller root mean square error 
and larger spatial correlation for the 
multi-model mean sea-level distribution 
(for the 17 models available) than 
the individual models (Table 5.2, 
Figure 5.10 and Figure 5.11), where 
larger inter-model differences of 
regional sea-level patterns can be 
seen (Figure 5.10). The root mean 
square error between the mult-model 
mean and the observations is 0.09 m 
(Table 5.2 and Figure 5.11) over the 
region (120°E–70°W, 45°S–45°N) and 
the spatial correlation is very high at 
0.97 (Table 5.2).

Figure 5.9: Relative size of climate drift in the CMIP3 models (based on their respective simulation with fixed greenhouse gases 
concentrations: the control run) versus the simulated 1950–2000 trend (where greenhouse gases concentrations follow historical levels) 
for surface air temperature (left) and rainfall (right). Model numbers are defined in Table 4.1 (Model 16 is INGV-SXG). Red dots indicate 
models that use flux adjustment (a correction made to some models to reduce the effect of model drift, see Glossary).

5.2.2.6 Sea Level

Mean Sea-Level Pattern

The observed sea-level pattern was 
presented in Section 2.6.4 (see 
Chapter 4 and Gregory et al. (2001) 
for a description of techniques to 
calculate sea level from the models). 
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Figure 5.10: Tropical and sub-tropical Pacific basin mean sea level (in metres) from each climate model and observations for the period 
1993–2000. The first number in brackets above each panel is the spatial correlation of mean sea level between each climate model 
and the observations for the tropical and sub-tropical Pacific basin (120°E–70°W, 45°S–45°N), while the second number is root mean 
square error. The global mean, averaged over the same period, is removed from each panel.
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Figure 5.11: Tropical and sub-tropical Pacific basin mean sea level (in metres) based 
on (a) observations and (b) the multi-model mean for the period 1993–2000. The spatial 
correlation between (a) and (b) is 0.97, while the root mean square error is 0.09 m. 
The global mean is removed from each panel.
 

Table 5.2: Spatial correlation and root mean square (RMS) error of mean sea level 
(in metres) between each climate model and observation for the period 1993–2000 
over the tropical and sub-tropical Pacific basin (120°E–70°W, 45°S–45°N).

Climate model Spatial correlation RMS error (m)

BCCR-BCM2.0 0.89 0.11

CCSM3 0.93 0.13

ECHAM5/MPI-OM 0.91 0.18

ECHO-G 0.85 0.19

FGOALS-g1.0 0.91 0.10

GFDL-CM2.0 0.94 0.13

GFDL-CM2.1 0.93 0.12

GISS-AOM 0.81 0.18

GISS-EH 0.85 0.22

GISS-ER 0.81 0.24

IPSL-CM4 0.92 0.10

MIROC3.2(hires) 0.94 0.12

MIROC3.2(medres) 0.94 0.21

MRI-CGCM2.3.2 0.95 0.18

PCM 0.82 0.21

UKMO-HadCM3 0.77 0.17

UKMO-HadGEM1 0.92 0.15

Multi-model mean 0.97 0.09

Sea-Level Trends

Robust projections of sea-level rise 
depend critically on understanding 
the ability to adequately represent 
past sea-level changes in model 
simulations. In the IPCC Fourth 
Assessment Report (Bindoff et al., 
2007) it was pointed out that the 
inability to satisfactorily explain the 
observed sea-level rise over decades 
has been a significant limitation in all 
of the IPCC assessments to date and 
a barrier to narrowing projections of 
sea-level rise.

Consistent with these results, 
Rahmstorf et al. (2007) showed that 
the observed sea level from tide 
gauges (1990–2001) and from satellite 
altimeter data (1993–2006) was rising 
at the upper limit of the projections 
from the IPCC (2001). Church et 
al. (2011) have also compared the 
observed sea-level rise derived from 
an improved sea-level reconstruction 
(Church and White, in press) and a 
longer altimeter time series, with the 
projected sea-level rise based on 
the IPCC projections (2007). By the 
end of the observational time series, 
both the reconstructed and altimeter 
sea-level datasets are close to the top 
of the projections.

Climate model simulations that only 
included the impact of greenhouse 
gases (and not the natural 
climate-influencing factors such as 
solar variability and stratospheric 
aerosols from large volcanic eruptions) 
have significantly larger trends and 
significantly less variability (Domingues 
et al., 2008) than simulations with 
improved upper-ocean heat content 
and steric sea-level trends (Domingues 
et al., 2008; Ishii and Kimoto, 2009; 
Levitus et al., 2009). In contrast, the 
variability in models that do include 
these natural climate-influencing 
factors is similar to the observed 
ocean variability but the trend in both 
ocean heat content and thermosteric 
sea-level rise is slightly smaller than the 
observations (Domingues et al., 2008). 
Model simulations which include 
natural factors also suggest that steric 
sea level would have fallen by several 
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millimetres following the eruption of 
Mount Pinatubo in 1991 and that the 
ocean recovery from this cooling could 
add about 0.5 mm per year to the 
rate of steric sea-level rise over the 
decade from 1993, coincident with 
the first decade of high quality satellite 
altimeter observations (Church et al., 
2005; Gregory et al., 2006).

There have been updated glacier 
and ice cap mass inventories (Radic 
and Hock, 2010) resulting in a larger 
ice volume estimate, and permitting 
the mass changes of Greenland and 
Antarctica to be explicitly included 
in projections. The dataset of glacier 
mass balance has been expanded 
by using the ‘geodetic’ observations 
of glacier volume change in addition 
to the surface mass-balance 
observations (Cogley, 2009). Radic 
and Hock (2011) have allowed for 
glacier and ice cap hypsometry 
(changing area with altitude) in recent 
projections. Most recently, LeClercq 
et al. (2011) have used glacier length 
observations together with the surface 
mass balance observations compiled 
by Cogley (2009) to estimate glacier 
and ice cap contributions to sea 
level since 1800. Current methods 
reproduce these observations but 
significant uncertainty in parameters 
used for projections remain and the 
methods used in the IPCC (2007) 
report do not allow glacier and ice 
cap contributions to come to a new 
equilibrium in a warmer climate.

In the IPCC (2007) report, the ice sheet 
projections were completed using 
empirically calibrated schemes for 
melting as a function of temperature 
change. More recent work employs 
climate models at high resolution in 
the ice sheet regions and incorporates 
detailed physical models of the 
surface energy balance, melting and 
runoff, and snow accumulation, both 
for Greenland (Fettweis, 2007) and 
Antarctica (Krinner, 2007). In the IPCC 
(2007) report, it was recognised that 
the current suite of ice sheet models 
was not capable of adequately 
simulating a potential rapid response 
of the ice sheets to global warming. 

Much attention has been directed in 
recent years to developing improved 
models of ice sheet dynamics, and 
some first results are now available 
(Joughin et al., 2010). More are 
expected as an outcome of two 
large ongoing activities, the SeaRISE 
project supported by NASA, and the 
EU-funded ice2sea project.

5.2.2.7 Summary: 
Ocean Variables

In summary, while climate models 
are able to reproduce most of the 
important oceanic features, natural 
variability in the ocean, and the 
direction of historical changes, there 
are still significant biases that must 
be considered when applying these 
models to projections. The INGV-SXG 
model displays a large climate drift 
in all variables, and does not provide 
a corresponding control simulation 
to correct for climate drift. It is 
recommended that this model is not 
used for projections of future climate in 
Chapters 6 and 7 (Section 5.5).

Global climate models reproduce 
the observed pattern of the regional 
distribution of sea level with a fair 
degree of realism. Models that include 
natural and human emissions as 
climatic factors have similar temporal 
variability in global-averaged ocean 
thermal expansion as the observations, 
but a slightly smaller rate of rise over 
recent decades.

5.2.3 Climate Features 
and Patterns of 
Variability
In this section, the ability of models 
to simulate the major features and 
patterns of variability of climate in the 
PCCSP region is evaluated. A detailed 
description of the observed climate 
features (the SPCZ, ITCZ and West 
Pacific Monsoon) and components of 
climate variability (ENSO and the Indian 
Ocean Dipole) is given in Chapters 2 
and 3.

5.2.3.1 El Niño-Southern 
Oscillation 

As ENSO is a major component of 
climate variability in the PCCSP region, 
it is essential that it is well simulated 
in climate models. To simulate 
ENSO, a climate model needs to 
accurately simulate atmosphere-ocean 
interactions on all relevant time and 
space scales. In particular, a model 
requires a realistic mean climate, 
including the Walker Circulation and 
zonal and vertical ocean temperature 
gradients; realistic daily to weekly wind 
variability that helps trigger ENSO 
events; variations in the thermocline 
depth and slope; and appropriate 
ocean-atmosphere interactions. A key 
factor in successfully simulating all 
these features is sufficient spatial 
and temporal resolution to represent 
small-scale processes, such as 
ocean eddies. Other important 
model characteristics include realistic 
convection processes, representation 
of clouds and the feedbacks between 
clouds and radiation.

The adequate simulation of all these 
features contributes to a more realistic 
representation of the spatial pattern 
and strength of ENSO events, the 
frequency of events, the characteristics 
of different types of events, and the 
link between ENSO and climate 
variables such as rainfall. Reproducing 
ENSO-like behaviour in climate models 
is a very complex task and it is a 
significant achievement that, unlike two 
decades ago, most climate models 
simulate an ENSO-like phenomenon. 
The climate models involved in the 
CMIP3 comparisons (Section 4.3.1) 
perform much more realistically than 
previous generations of models 
because resolution, model formulation 
and representation of sub-grid scale 
processes (parameterisations) have 
been improved. Thus, many models 
are extremely useful tools for studying 
ENSO and its impacts (Guilyardi et al., 
2009; Collins et al., 2010).

Challenges in simulating ENSO 
behaviour still remain. Of the 
CMIP3 models, a small minority 
fail to adequately reproduce ENSO 
variability, probably due to coarse 
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ocean resolution (van Oldenborgh et 
al., 2005). Two models in particular 
(GISS-AOM and GISS-ER) show 
virtually no ENSO-like variability. 
The remaining models have a pattern 
of El Niño warming that extends too far 
into the western Pacific (Figure 5.12). 
This means that in some models, 
some Pacific Islands experience 
sea-surface temperature anomalies 
of the wrong sign and therefore the 
opposite impact of the El Niño event 
to what is observed. This bias also 
explains most of the error in the 
sea-surface temperature pattern 
correlations for canonical ENSO.

Every El Niño and La Niña event 
is different, but they have been 
observed to fall into two types based 
on the spatial patterns of sea-surface 
temperature anomalies that occur: 
the canonical ENSO and the El Niño 
Modoki (Section 3.4.1). The El Niño 
Modoki is thought to have become 
more prevalent in recent decades. 
It remains an ongoing topic of 
research whether this is due to natural 
variability or anthropogenic factors 
(Yeh et al., 2009).

CMIP3 models show varying degrees 
of skill in reproducing the strength 
and frequency of ENSO events. 
Observed ENSO events undergo 
a highly irregular two to seven year 
oscillation, but in some models ENSO 
events occur too often and too 
regularly, e.g. an El Niño or La Niña 
every two years (Randall et al., 2007), 
or too seldom (Joseph and Nigam, 
2006). The variability of the strength 
of canonical and Modoki events 
(measured by standard deviation of 
Niño3.4 and El Niño Modoki Index 
respectively, Figure 5.13 left), vary 
substantially from very weak to overly 
strong. In general, models with 
excessively strong canonical ENSO 
variability also have excessively strong 
Modoki variability, or too weak for 
both, reflecting general sea-surface 
temperature variability in the tropics.

The Modoki pattern was identified 
in observations as the second most 
important pattern in explaining monthly 
variability of sea-surface temperature 
in the tropical Pacific region (Ashok 

et al., 2007). The first pattern is 
the canonical El Niño pattern of 
sea-surface temperature variability, 
which accounts for 45% of tropical 
sea-surface temperature variability, 
compared to 12% for El Niño Modoki. 
The observed spatial patterns of the 
two modes are very similar to the 
patterns in Figure 3.4. In order to 
determine whether the spatial patterns 
of these forms of variability in the 
CMIP3 models correspond to those 
observed, they have been calculated 
for all models and for observations 
(HadISST) from their linearly 
de-trended monthly sea-surface 
temperatures from 1975–1999, using 
Empirical Orthogonal Function analysis 
(von Storch and Zwiers, 2000). Pattern 
correlations between the observed 
and model patterns (Figure 5.13 
right) show that most of the CMIP3 
models do not successfully distinguish 
the canonical and Modoki types of 
ENSO variability. The canonical ENSO 
pattern is reasonably well reproduced 
by most models (pattern correlation, 
rp is above 0.6 for most models), but 
in general they do not reproduce the 
Modoki pattern well (rp is below 0.6 for 
most models). Only a small number 

Figure 5.12: Zero-line for sea-surface temperature response to ENSO for individual 
model (thin lines), multi-model mean (thick red) and observed (HadISST, thick black). 
During an El Niño event, warming (cooling) occurs to the east (west) of this line. Clearly 
evident is the large systematic bias in the model sea-surface temperature response over 
the equatorial western Pacific. This has important implications for the rainfall response 
to ENSO, which tends to increase (decrease) over warmer (cooler) waters.

of models produce a second mode of 
variability that is recognisably similar 
to the observed Modoki pattern. From 
the results shown here it also is clear 
that several models do not reproduce 
realistic variability for either canonical 
or Modoki ENSO.

The overly westward extension of 
sea-surface warming during El Niño 
events in most models has important 
implications for the rainfall response 
to ENSO, which tends to increase 
over warmer waters and decrease 
over cooler waters. This is evident 
from model rainfall maps (Figure 5.14, 
models 2 and 3), particularly in 
the region east of Papua New 
Guinea. Almost all models have an 
ENSO-related rainfall response in the 
wrong direction in parts of the western 
Pacific. Also, those models with weak 
sea-surface temperature variability 
tend to have a weak rainfall response 
(Figure 5.14, model 1), and those 
with excessively strong sea-surface 
temperature variability have a strong 
rainfall response (model 2). Models with 
realistic ENSO sea-surface temperature 
variability show a more realistic rainfall 
response (model 3).
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Many models simulate errors in the 
ENSO related changes in temperature 
or rainfall that influence particular 
Partner Countries. As the line between 
regions of warmer and cooler water 
during ENSO events is shifted too far 

Figure 5.13: (Left) Variability (standard deviations) of the Niño3.4 Index and El Niño Modoki Index in the 24 CMIP3 climate model 
simulations (model numbers given in Table 4.1). The black square shows the observed standard deviations. (Right) Pattern correlations 
of canonical (Mode 1) and Modoki ENSO (Mode 2) spatial patterns of sea-surface temperature variability for each model with the 
observed patterns.

west in many models (Figure 5.12), 
countries may have the wrong 
sea-surface temperature anomaly 
during El Niño and La Niña events. The 
pattern of rainfall response to ENSO 
events is also shifted too far west in 

many models, and is too strong or too 
weak in some models (Figure 5.14). 
Therefore, models may not simulate 
the correct changes in rainfall during 
El Niño and La Niña events for some 
Partner Countries.

Figure 5.14: Observed (top left) and model (top right and bottom panels) rainfall response to a canonical El Niño event for three models. 
Contours represent the correlation coefficient between monthly Niño3.4 and rainfall. Positive correlations (blue) show where rainfall 
typically increases during El Niño events, and negative correlations (red) show where rainfall typically decreases during El Niño events.
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5.2.3.2 Indian Ocean Dipole

The simulation of the Indian Ocean 
Dipole (IOD, Section 3.4.7) in CMIP3 
models may be relevant to climate 
projection for regions affected by 
the IOD, including East Timor. Most 
CMIP3 models show some skill in 
reproducing the spatial pattern of 
surface temperatures that corresponds 
to the observed IOD. However 
the multi-model mean IOD pattern 
has a stronger east-west gradient 
than observed (Cai et al., 2009c). 
In five CMIP3 models (ECHO-G, 
IPSL-CM4, GISS-AOM, GISS-ER and 
INM-CM3.0), the IOD sea-surface 
temperature pattern is unrealistic, 
with a weak or negative correlation 
between the observed pattern and the 
model patterns (Cai et al., 2009c).

5.2.3.3 South Pacific 
Convergence Zone

The observed SPCZ is described in 
detail in Chapter 2. The simulation 
of the SPCZ in the CMIP3 global 
climate models is examined using 
December-February and June-August 
mean rainfall from the last two 

decades of the 20th century climate 
simulations compared with CMAP 
observed rainfall (Table 2.2). The SPCZ 
position is identified from the line of 
maximum rainfall in the South Pacific, 
extending from around 150°E towards 
the south-east.

The observed CMAP and 
multi-model mean rainfall for the 
December-February and June-August 
seasons (Figure 5.15) show that 
the observed SPCZ is more intense 
during December-February, and 
extends further into the south-east 
Pacific. During June-August, the ITCZ 
is more intense than the SPCZ, and 
the SPCZ breaks into distinct tropical 
and sub-tropical components. The 
multi-model mean rainfall also shows 
a distinct SPCZ band, which is most 
intense during December-February. 
The multi-model mean SPCZ has 
an orientation that is too zonal 
(east-west), rather than sloping to the 
south-east, and does not extend far 
enough into the sub-tropics in the 
eastern Pacific. In June-August, the 
multi-model mean rainfall does not 
show the sub-tropical section of the 
SPCZ located at around 30°S.

Figure 5.15: (Top left): Observed December-February seasonal mean rainfall (from CMAP; see Table 2.2) and near-surface wind 
(from NCEP). (Top right): As for top left panel but for June-August. (Bottom left): Multi-model mean December-February seasonal mean 
rainfall and near-surface wind. (Bottom right): As for bottom left panel but for June-August.

While most models are able to 
simulate a separate ITCZ and SPCZ, 
a small number of models do not 
show a distinct SPCZ (for individual 
model performance, see Brown et al., 
in press). GISS-AOM and GISS-ER 
simulate a single rainfall band over the 
equator, while MIROC3.2 (medres) 
and MIROC3.2 (hires) simulate an 
SPCZ that does not extend east of the 
International Date Line.

Observations show that the SPCZ 
tends to move north-east during 
El Niño years and south-west during 
La Niña years (Folland et al., 2002; 
Vincent et al., 2011). The majority of 
models reproduce this movement of 
the SPCZ in response to ENSO. This 
underpins the ability of the models 
to simulate the influence of ENSO on 
rainfall and atmospheric circulation 
in the South Pacific (Brown et al., in 
press) because ENSO impacts on 
rainfall and circulation are largely linked 
to shifts in the SPCZ in this region.
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5.2.3.4 Intertropical 
Convergence Zone

Climate models typically simulate 
a narrow, zonal rainfall maximum 
corresponding to the ITCZ, with the 
exception of three models (GISS-AOM, 
GISS-ER and MIROC3.2(hires)) which 
show no Northern Hemisphere ITCZ 
branch in the western Pacific. These 
three models should therefore not be 
used for regional projections in that 
area. In the central and eastern Pacific, 
many models display a double ITCZ, 
with a Southern Hemisphere branch 
that is not found in the observations. 
In the multi-model mean there is too 
much rain in the south-eastern Pacific, 
with associated December-February 
northerly wind anomalies over the 
equator (in the observations this is a 
region of persistent southerlies).

broad maximum of the northern 
extent between July and September 
(Waliser and Gautier, 1993). Models 
represent the December-February 
location well on average, but show 
an excessive northward displacement 
in July-September (Figure 5.16); a 
bias that occurs in almost all models. 
Models on average reproduce 
the seasonal cycle of ITCZ rainfall 
amounts reasonably well, although 
uncertainties in the observations 
are large in this region, precluding 
stronger conclusions. On interannual 
time scales, most models are able to 
reproduce the equatorward shift under 
El Niño conditions and the poleward 
shift under La Niña conditions found 
in the observations (Chapter 3), 
except for those models not showing 
significant ENSO variability.

5.2.3.5 West Pacific 
Monsoon

In the Southern Hemisphere the 
West Pacific Monsoon consists 
of the seasonal reversal of wind 
direction over the region to the 

Figure 5.16: Zonal average rainfall for (a) December-February, and (b) June-August, across the Pacific (160°E–120°W). CMAP 
(Table 2.2) observations and multi-model means are shown as solid and dashed lines, with the inter-model range as blue shading.

north of Australia, extending from 
East Timor to the Solomon Islands. 
The observed December-February 
monsoon winds are north-westerly, 
and bring convection and heavy 
rainfall predominantly to East Timor, 
Indonesia, Papua New Guinea and 
the Solomon Islands (Figure 5.15 (a) 
and (b)). In the Northern Hemisphere, 
corresponding seasonal reversals 
affect Palau and the Federated States 
of Micronesia. The spatial pattern of 
rainfall and winds associated with the 
monsoon is reasonably well simulated 
by the multi-model mean (Figure 5.15 
(c) and (d)).

Over the Southern Hemisphere 
box-1 region (Figure 2.10), all models 
simulate easterly winds that prevail 
during June-August and most models 
also simulate either a weakening 
or a reversal of the zonal wind 
component during December-February 
(Figure 5.17). Four models 
(GISS-AOM, GISS-EH, IPSL-CM4 and 
MIROC3.2(medres)) fail to simulate a 
reversal in wind direction.

The observed seasonal variation 
of the position of the ITCZ has an 
amplitude of approximately 2° of 
latitude, with maximum southward 
extent (although still in the Northern 
Hemisphere) in February, and a 
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When the seasonal rainfall contrast 
is expressed as the ratio of the 
December-February rainfall total 
divided by the June-August rainfall 
total over the Southern Hemisphere 
box-1 region (Figure 2.10), the 
observed ratio is close to two 
according to the CMAP data 
(Figure 5.18). Almost all the models 
simulate a ratio greater than one, with 
the exception of GISS-EH, which fails 
to simulate an enhancement of rainfall 
during the monsoon season.

Figure 5.17: Seasonal surface zonal (easterly) winds as simulated by CMIP3 models 
for the Southern Hemisphere box-1 region (Figure 2.10) in December-February 
(light grey) and June-August (dark grey). Observed (NCEP, Table 2.2) zonal winds for 
December-February (blue) and June-August (red). Note that surface winds are only 
available for 20 CMIP3 models.

Figure 5.18: The ratio of December-February to June-August rainfall as simulated 
by CMIP3 models for the Southern Hemisphere box-1 region (Figure 2.10) (purple). 
The observed rainfall ratio (CMAP, Table 2.2) is indicated in blue. The black lines 
encompass the multi-model mean plus and minus one standard deviation.

Overall, with only a few exceptions, 
the CMIP3 climate models capture 
the major climatic features of the 
monsoon, including the seasonal 
reversal of the surface winds and 
the dominance of summer rainfall 
over winter rainfall. Of the four 
models without wind reversal, one, 
IPSL-CM4, has a reasonable rainfall 
seasonality, and the wind reversal 
failure is marginal. Consequently, three 
models (GISS-AOM, GISS-ER and 
MIROC3.2(medres)) do not adequately 
simulate the West Pacific Monsoon 
wind reversal and rainfall seasonality.

5.2.3.6 Summary: 
Climate Features and 
Patterns of Variability

Most of the 24 CMIP3 global climate 
models are able to reproduce the 
major climate features (SPCZ, 
ITCZ and West Pacific Monsoon) 
and modes of variability (ENSO, 
Interdecadal Pacific Oscillation and 
Pacific Decadal Oscillation). Two 
models (GISS-AOM and GISS-ER) 
show virtually no ENSO-like variability. 
These two models also fail to 
simulate a distinct SPCZ and ITCZ. 
In addition, MIROC3.2(medres) and 
MIROC3.2(hires) simulate an SPCZ 
that does not extend to the east of 
the International Date Line. Three 
models fail to simulate the West Pacific 
Monsoon wind reversal and rainfall 
seasonality (GISS-AOM, GISS-ER and 
MIROC3.2(medres)).
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5.2.4 Extremes
As a first step in assessing extreme 
events, an overview of the ability of the 
models to simulate the full spectrum 
of daily maximum temperature, 
minimum temperature and rainfall over 
the period 1980–1999 was obtained 
by calculating the Probability Density 
Function (PDF) overlap skill score 
(Perkins et al., 2007; Figure 5.19). 
In the context of daily maximum 
surface air temperature, for example, 
the PDF overlap skill score determines 
the degree to which a model simulates 
the correct number of cold, mild and 
hot days. Scores can range from 0.0 
(no skill) to 1.0 (highest possible skill). 
The test is performed on the empirical 
distributions of the observed and 
model data, rather than a parametric 
distribution fitted to each dataset.

Table 5.3: Definition of the statistics used to assess the ability of the models to capture 
the magnitude and frequency of extreme events.

Test Description Variables

1-in-20-year return 
value bias (BRV20)

a

Difference (model minus observed) in the 
magnitude of the event that occurs on 
average only once every 20 years

Maximum temperature 
Minimum temperature 
Rainfall

90th percentile bias 
(B90pctl)

Difference in the value that is exceeded 
on only 10% of days

Maximum temperature 
Minimum temperature 
Rainfall

10th percentile bias 
(B10pctl)

Difference in the value that is exceeded 
on all but 10% of days

Maximum temperature 
Minimum temperature 
Rainfall

Heat wave duration 
index bias (BHWDI)

b,c

Difference in the average length of a heat 
wave (defined as five or more consecutive 
days with a maximum temperature above 
(μ + 2σ)oC of the observational data)

Maximum temperature

Warm nights (WN)b Percentage of days where the minimum 
temperature is ≥ 90th percentile of the 
observational data (i.e. a perfect score 
is 10%)

Minimum temperature

Highest 5-day 
rainfall total bias 
(BRX5)

b

Difference in the magnitude of the highest 
5-day rainfall total 

Rainfall

Extreme rainfall 
contribution index 
bias (BR95pT)

b

Difference in the percentage of total 
annual rainfall that comes from intense 
rainfall events (defined as more intense 
than the 95th percentile)

Rainfall

μ = mean; σ = standard deviation
aCalculated using the Generalised Extreme Value distribution (Coles, 2001; Kharin et al., 2005)
bSee http://cccma.seos.uvic.ca/ETCCDMI/ for details
cThreshold was modified from the original ETCCDMI definition, to better reflect the 
Indo-Pacific climate.

Figure 5.19: Schematic diagram illustrating the information contained in a Probability 
Density Function (PDF) and the PDF overlap skill score. A PDF provides information on the 
frequency of an event in a given sample. For example, for the red PDF a daily maximum 
temperature of 25oC occurs on 8% of days (a relative frequency of 0.08). As indicated by 
the grey shading, the PDF overlap skill score measures the degree of commonality (or 
overlap) between modelled (e.g. red PDF) and observed (e.g. black PDF) daily data.

While the PDF overlap skill score is 
useful in gaining an overview of the 
ability of climate models to simulate 
the full spectrum of daily climate, it is 
not very useful for capturing rare and 
extreme events (e.g. the hottest day 
of the year has a relative frequency of 
0.003, and is therefore barely visible on 
a PDF of daily maximum temperature). 
For this reason, the model bias was 
calculated for a number of commonly 
used statistics that capture the 
magnitude and frequency of extreme 
daily maximum temperature, minimum 
temperature and rainfall events 
(Table 5.3).

Unless otherwise stated, the results 
presented for all bias statistics refer to 
the multi-model mean (plus/minus the 
inter-model standard deviation) of the 
all observation test scores (the value 
obtained by averaging across the 
scores from the ERA-40, NCEP/DOE 
R-2 and JRA25 datasets). Only limited 
amounts of daily data are available for 
CMAP and GPCP, so these datasets 
could not be used for the rainfall 
analysis. A list of the CMIP3 models for 
which daily data are available is given 
in Appendix 1. The only exception to 
this listing is for the rainfall statistics, 
where GISS-ER and GISS-EH 
were excluded due to their outlying 
poor performance.

http://cccma.seos.uvic.ca/ETCCDMI
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5.2.4.1 Surface Air 
Temperature

The ability of the CMIP3 models to 
reproduce the full spectrum of daily 
maximum and daily minimum surface 
air temperature is very similar. Both 
variables are particularly well simulated 
in the South Pacific, with ensemble 
average PDF overlap skill scores 
of up to 0.8 achieved in the vicinity 
of Vanuatu, Fiji and Tonga (Figure 
5.20, inset). However, the equatorial 
Pacific is less well simulated, with 
scores as low as 0.3 near Kiribati 
and Nauru. These low equatorial 
scores can be explained by a general 
underestimation of the mean and 
overestimation of the variance in daily 
temperature (Figure 5.20) which may 
be related to the aforementioned cold 
bias and tendency of the models 
to overestimate the amplitude of 
the seasonal temperature cycle 
(Section 5.2.1.1).

With respect to the magnitude of rare 
and extreme temperature events, 
the 1-in-20-year maximum daily 
temperature tends to be slightly 
underestimated by the models 
throughout most of the PCCSP 
region (BRV20 = -1.0 ± 0.8°C), while 
the 1-in-20-year minimum daily 
temperature is either slightly over- or 
underestimated, depending on 
the location and particular model. 
The models tend to overestimate 
the maximum heat wave duration 
throughout the PCCSP region 
(BHWDI = 6.4 ± 4.7 days) and 
the number of warm nights 
(WN = 17 ± 12%).

5.2.4.2 Rainfall

The CMIP3 models have a similar 
ability in simulating the full spectrum 
of daily rainfall throughout the PCCSP 
region, with multi-model average 
spatial PDF overlap skill scores all 
within the narrow range of 0.6 to 0.8 
(Figure 5.21, inset). The nature of 
the differences between the model 
and observed PDF, however, differs 
depending on location (Figure 5.21). 
Throughout most of the PCCSP 
region, the models generally 
underestimate the number of days 
at both ends of the observed daily 
rainfall distribution (i.e. the number 
of days of both heavy rain and little 
to no rain). In contrast, the models 
tend to overestimate the number of 
days of little or no rain in the vicinity 
of Kiribati and Nauru. This contrasting 
performance may be related to the 
influence of the cold tongue bias 
(Section 5.2.2.1 and Box 5.2).

Consistent with this underestimation 
of the frequency of extreme 
rainfall events, the CMIP3 models 
also generally underestimate the 
intensity. This is evident from a 
tendency to underestimate the 
intensity of the 1-in-20-year event 
(B20RV = -54 ± 28 mm per day), 
the contribution of heavy rainfall 
events to the annual rainfall total 
(BR95pT = -3.1 ± 2.2%) and the 
highest 5-day rainfall total 
(BRX5 = -109 ± 67 mm). These model 
deficiencies in representing the 
frequency and intensity of extreme 
rainfall events may be partly explained 
by the failure of coarse resolution 
climate models to fully represent 
intense, localised rainfall features.

5.2.4.3 Summary: Extremes

In summary, although the CMIP3 
models show some skill in representing 
the broad PDF of temperature and 
rainfall (as evidenced by the overlap 
statistic) they tend to underestimate 
the frequency and intensity of present 
day extreme (high) temperature and 
rainfall events. This finding may be 
related in part to the relatively coarse 
resolution of these models. Biases 
tend to be most pronounced in the 
vicinity of Kiribati and Nauru, which is 
likely due to the influence of the cold 
tongue bias. The PCM model provides 
a relatively poor simulation of present 
day temperature extremes, while the 
GISS-ER and GISS-EH models provide 
a poor simulation of present day rainfall 
extremes (see Perkins, in press for 
details). It is recommended that these 
models are not used for projections 
of future climate in Chapters 6 and 7 
(Section 5.5).
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Figure 5.21: Multi-model mean (GISS-EH 
and GISS-ER excluded) and observed 
mean (ERA-40, NCEP/DOE R-2 and 
JRA25) 1980–1999 daily rainfall PDFs for 
two locations: south (170°W, 20°S) and 
equator (175°E, 0°). Inset: Multi-model 
mean PDF overlap skill score for the 
1980–1999 daily rainfall, averaged over 
the observational datasets.

Figure 5.20: Multi-model mean 
and observed mean (ERA-40, 
NCEP/ DOE R-2 and JRA25 average) 
1980–1999 maximum daily surface air 
temperature PDFs for two locations: 
south (170°W, 20°S) and equator 
(175°E, 0°). Inset: Multi-model mean 
PDF overlap skill score for the 
1980–1999 daily maximum surface 
air temperature, averaged over the 
observational datasets.
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Box 5.2: CMIP3 Model Biases in the 
PCCSP Region

In general, the CMIP3 global climate models are able to represent essential aspects 
of the most important large-scale climate features of the Pacific region. These include 
representing the geographic and temporal patterns of sea-surface temperature and 
wind speed and direction, and the approximate shape, location and seasonality 
of the major convergence regions, e.g. SPCZ, ITCZ, and their associated rainfall. 
This provides confidence in the use of models for regional climate projections.

However, a number of common model biases and errors are apparent which lead to 
important limits in this confidence. Perhaps the most significant of these arise from a 
tendency for models to extend the Pacific equatorial cold tongue too far to the west, 
resulting in western and central equatorial Pacific sea-surface temperatures which 
are too cold (Figure 5.4). Maximum temperature biases occur in the vicinity of Nauru 
and Kiribati, however other countries are also affected, as this bias affects large-scale 
patterns of wind and rainfall, and thereby many aspects of broader Pacific climate 
and climate variability.

Both model sea-surface temperatures and surface air temperatures are lower than 
observed in this region, with resultant rainfall totals significantly too low, particularly 
near the equator. This manifests as an artificial split between the ITCZ and SPCZ, 
the latter of which is too east-west orientated (Figure 5.15). The ITCZ is also located 
too far off the equator in December-February. In addition, winds are consistently 
too strong here, with direction errors (at over 10°) being largest in the Pacific basin 
(Figure 5.3). The cold tongue bias also affects ENSO variability, in particular pushing 
the pattern of response too far to the west, with consequences for the interannual 
variation of surface temperatures and rainfall at low latitudes in the western Pacific 
(Figure 5.12).

It is critical that such biases and shortcomings are borne in mind when interpreting 
model output for practical applications within the region. They also provide some of 
the most significant challenges for ongoing research (Chapter 8).

Flux adjustment in global climate models may reduce some of these biases, but leads 
to uncertainty over their ability to simulate climate variability and the response to 
climate forcing.
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In evaluating the dynamical 
downscaling performed with the 
CCAM model (Section 4.5.2), 
a number of comparisons have 
been made:

•	 A comparison of the large-scale 
PCCSP region present day climate 
simulated by CCAM (i.e. the 
60 km resolution simulations) with 
observations and the six host global 
climate models (Section 5.3.1.1). 
Note that the six models chosen 
for downscaling here were not the 
top six performing members in 
the previous global climate model 
evaluation. They were selected 
based upon the research of Smith 
and Chandler (2010) because 
they generally scored high in this 
study and tended to have good 
interannual variability, such as 
ENSO. However, as the sea-surface 
temperature biases were corrected 
before being used by CCAM, and 
no atmospheric data from the global 
model was used, the performance 
of the global climate model does 
not directly relate to the accuracy of 
the downscaled simulations.

•	 A comparison of the small-scale 
present day climate simulated by 
CCAM (i.e. the 8 km resolution 
simulations) with relevant 
high resolution observations 
(Section 5.3.1.2). This analysis was 
conducted for two regions: Papua 
New Guinea and Fiji.

•	 A comparison of the performance 
of CCAM with additional dynamical 
downscaling simulations 
(Section 5.3.3).

5.3.1 CCAM Large-
Scale (60 km) Climate
Using the same statistics and 
observational datasets as in 
Section 5.2.1, the CCAM 60 km 
simulations were upscaled to a 
common 2.5° latitude/longitude 
grid. This allowed for large-scale 
temperature, rainfall and extreme 
weather comparisons to be made 
against observations and the six host 
global climate models.

5.3.1.1 Surface Air 
Temperature

The evaluation of present day 
surface air temperature (Table 5.4) 
shows general improvement in the 
downscaled simulations versus the 
host global models. In particular, the 
downscaled simulations provide an:

•	 Improved mean state  
(Eabs = 0.55 vs. 1.03°C).

•	 Improved phase (rt = 0.93 vs. 0.77) 
and amplitude (σratio,t = 1.07 vs. 1.21) 
of the seasonal cycle.

5.3 Evaluation of Dynamical and 
Statistical Downscaling

•	 Improved location (rp = 0.97 vs. 0.90) 
and amplitude (σratio,x = 1.05 vs. 1.17) 
of spatial features.

The absence of any pronounced 
cold tongue bias appears to be the 
main factor behind improvements 
in the mean state and spatial 
pattern (Figure 5.22). This is due to 
the sea-surface temperature bias 
adjustment in the CCAM method. Also 
note the improved representation of 
the temperature over the land masses 
due to better resolved topography in 
the CCAM 60 km simulations, as for 

Figure 5.22: Annual mean surface air temperature for 1980–1999 ERA-40 reanalysis 
dataset (top), for the global climate model multi-model mean (middle) and CCAM 60 km 
six-model mean (bottom).
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Papua New Guinea and Fiji, for example. 
The warm bias in the CCAM simulations 
is the result of a parameterisation of the 
sea-surface temperature enhancement 
when there are light winds and sunny 
skies. It appears as though this effect 
may be too large in these simulations. 
This can be seen in the evaluation 
statistics of the individual downscaled 
simulations (Table 5.4).

5.3.1.2 Rainfall

The evaluation of recent historical rainfall 
(Table 5.5) shows general improvement 
in the downscaled simulations versus 
the host global climate model. In 
particular, the downscaled simulations 
provide:

•	 Improved mean state 
(Eabs = 1.33 vs. 1.88 mm per day).

•	 Improved spatial pattern 
(rp = 0.76 vs. 0.68).

•	 Slightly poorer seasonal cycle 
(rt = 0.51 vs. 0.59).

It is difficult to comment on the amplitude 
of the seasonal cycle or the spatial 
features of the region, due the large 
differences between the amplitude of 
CMAP and GPCP (Yin et al., 2004; also 
see Figure 5.2 and discussion in Section 
2.2.1.4). However, it is interesting to 
note that the outputs of global climate 
models compared more favourably 
with CMAP, while the downscaled runs 
compared more favourably with GPCP. 
An improved orientation of the SPCZ 
and the absence of excessive rainfall 
in the far west of the PCCSP region 
(i.e. the region influenced by the West 
Pacific Monsoon) appear to be the main 
factors behind improvements in the 
mean state and spatial pattern in CCAM 
(Figure 5.23). Note that for the CCAM 
simulations, the statistics for the various 
simulations are fairly similar, while the 
statistics for the global climate models 
vary significantly. Although the biases in 
the CCAM simulations (around 1 mm per 
day) are worse than the outputs of global 
climate models, the mean absolute 
errors are less. Evidently, the global 
climate models have both positive and 
negative errors in various regions which 
cancel out to give a smaller bias, but 
larger mean absolute errors.

Figure 5.23: 1980–1999 annual mean rainfall (mm per day) for GPCP data (top), 
CMAP data (middle top), multi-model mean of the six global climate models that 
were downscaled (middle bottom) and multi-model mean of six CCAM 60 km 
models (bottom).
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Table 5.4: Combined statistics for global climate multi-model mean and CCAM 60 km multi-model mean simulations for surface air 
temperature against ERA-40, NCEP2 and JRA25 reanalysis. Bold values show better results for multi-model means (top) and also for 
pairs of global climate model-CCAM simulations (middle and bottom sections). For comparison, statistics for the multi-model means 
of the 23 global climate models and for the six individual host global climate models and CCAM 60 km simulations are also given (top). 
Statistics are defined in Table 5.1.

Surface air temperature (entire PCCSP region) Bias (˚C) Eabs (˚C) rt rp σratio,t σratio x

Multi-model means

Average (all 23 global climate models) -0.76 1.02 0.74 0.89 1.18 1.08

Average of 6 global climate models -0.40 1.03 0.77 0.90 1.21 1.17

Average of 6 downscaled models 0.50 0.55 0.93 0.97 1.07 1.05

Individual global model simulations

CSIRO-Mk3.5 1.01 1.04 0.80 0.89 1.13 1.18

GFDL-CM2.0 -1.33 1.35 0.77 0.93 1.44 1.28

GFDL-CM2.1 -0.94 0.98 0.73 0.93 1.44 1.22

ECHAM5/MPI-OM 0.16 0.46 0.81 0.93 1.05 1.04

MIROC3.2 (medres) -1.46 1.51 0.71 0.89 1.19 1.04

UKMO-HadCM3 0.14 0.86 0.83 0.85 1.00 1.25

Individual CCAM simulations

CCAM (CSIRO-Mk3.5) 0.54 0.58 0.94 0.97 1.06 1.06

CCAM (GFDL-CM2.0) 0.49 0.54 0.93 0.98 1.07 1.05

CCAM (GFDL-CM2.1) 0.52 0.57 0.93 0.97 1.08 1.05

CCAM (ECHAM5/MPI-OM) 0.52 0.56 0.94 0.98 1.08 1.06

CCAM (MIROC3.2 (medres)) 0.43 0.49 0.93 0.97 1.09 1.04

CCAM (UKMO-HadCM3) 0.53 0.57 0.94 0.97 1.06 1.05

Table 5.5: As for Table  5.4, but for rainfall. Observational data is from CMAP and GPCP.

Rainfall (entire PCCSP region) Bias (mm/day) Eabs (mm/day) rt rp σratio,t σratio x

Multi-model means

Average (all 23 global climate models) 0.39 1.77 0.55 0.63 1.25 1.27

Average of 6 global climate models 0.62 1.88 0.59 0.68 1.31 1.40

Average of 6 downscaled models 1.00 1.33 0.51 0.76 0.92 0.90

Individual global model simulations

CSIRO-Mk3.5 0.75 1.86 0.66 0.73 1.37 1.41

GFDL-CM2.0 0.55 1.60 0.67 0.76 1.49 1.50

GFDL-CM2.1 1.04 1.75 0.62 0.67 1.40 1.27

ECHAM5/MPI-OM 0.95 2.46 0.50 0.57 1.35 1.45

MIROC3.2 (medres) -0.13 1.23 0.53 0.70 1.02 1.10

UKMO-HadCM3 0.56 2.39 0.55 0.67 1.23 1.68

Individual CCAM simulations

CCAM (CSIRO-Mk3.5) 1.10 1.37 0.52 0.78 0.97 0.97

CCAM (GFDL-CM2.0) 0.94 1.31 0.54 0.76 0.91 0.85

CCAM (GFDL-CM2.1) 1.11 1.44 0.50 0.75 0.91 0.89

CCAM (ECHAM5/MPI-OM) 1.04 1.31 0.55 0.78 0.93 0.93

CCAM (MIROC3.2 (medres) 0.82 1.20 0.43 0.73 0.89 0.88

CCAM (UKMO-HadCM3) 0.97 1.35 0.55 0.76 0.92 0.87
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5.3.1.3 Extremes

Evaluation of the 1-in-20-year 
maximum daily air temperature (Figure 
5.24) shows large values of over 44°C 
in the reanalyses over Australia and 
fairly uniform values of around 30°C 
over the Pacific Ocean, with slightly 
lower values in the north-eastern and 
southern regions. The global climate 
models capture this pattern, but have 
higher values than the reanalyses. The 
upscaled CCAM 60 km simulations 
have even larger values over the 
ocean, but are closer to the reanalyses 
over Australia. The raw CCAM 60 km 
simulations have slightly higher values 
than the upscaled results, indicating 
that upscaling tends to slightly dampen 
the extremes.

The CCAM 8 km results for Fiji are 
fairly uniform, with lower temperatures 
to the south, similar to the CCAM 
60 km results. In addition, some 
variation is seen across the islands, 
with lower values in the mountains 
and higher values in the lowlands 
for the southern island and generally 
lower values for the northern island. 
For Papua New Guinea, the 8 km 
variations are much more pronounced, 
with lower extremes clearly evident 
over the high mountains and higher 
values over the lowlands. This 
pattern was also partially captured 
in the CCAM 60 km simulations 
(not upscaled).

Evaluation of the percentage of days 
with heavy rainfall (20–50 mm) shows 
agreement between the mean of the 
five global climate models for which 
daily data were available and that were 
used to downscale, and the mean of 
the CCAM 60 km simulations (Figure 
5.25), while the combined global 
climate model values appear to be too 
large, i.e. many of the global models 
appear to be simulating too many 
heavy rain days.

The CCAM 8 km percentage of heavy 
rain days for Fiji and Papua New 
Guinea (bottom row of Figure 5.25) 
shows a complex pattern, with higher 
values (greater than 20% of days 
with heavy rainfall) along the eastern 
edges of the Fiji Islands and lower 
values (around 2% of days with heavy 
rainfall) over western portions of the 
islands. Over Papua New Guinea, the 
largest percentage of heavy rain days 
is along mountain slopes and over the 
Solomon Sea, with fewer days over 
the Coral Sea and most inland areas. 
The lack of available quality-controlled, 
high-resolution gridded daily rainfall 
observational data prevents validation 
of these values.

The PDF overlap statistic used in 
the global climate models evaluation 
(Section 5.2.4) is also applied here to 
evaluate the extremes in the CCAM 
60 km simulations. Evaluation scores 
in Figure 5.26 are for multi-model 
means for all CMIP3 models with 
available daily data (top), the five global 
climate models with daily data used to 
drive the CCAM (middle), and the six 
CCAM 60 km downscaled simulations 
(bottom). The PDF statistic for daily 
rainfall shows general agreement for 
all three, with some improvement in 
using CCAM compared to the global 
climate models. For daily maximum 
temperature, improvement is not 
evident. This is potentially related to 
the CCAM simulations having a greater 
temperature spread (wider PDF) than 
the reanalyses, giving a smaller PDF 
statistic score.
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Figure 5.24: 1980–1999 1-in-20-year return maximum daily air temperature. Multi-model mean of (a) three reanalyses (NCEP2, 
ERA-40 and JMA25), (b) five global climate models, (c) six CCAM 60 km simulations upscaled to a 2.5 degree resolution grid, 
(d) six CCAM 60 km simulations on a 0.5 degree grid, (e) three CCAM 8 km simulations for Fiji, (f) three CCAM 8 km simulations for 
Papua New Guinea.
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Figure 5.25: 1980–1999 percentage days with heavy rainfall (20–50 mm). Multi-model mean of three reanalyses (NCEP2, ERA40 and 
JMA25) (top left), average of all global climate models (top right), average of five global climate models (middle left), average of six 
CCAM 60 km simulations (middle right), average of three CCAM 8 km simulations for Fiji (bottom left) and average of three CCAM 8 km 
simulations for Papua New Guinea (bottom right).
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5.3.2 CCAM Small-
Scale (8 km) Climate
As demonstrated in the previous 
section, the CCAM 60 km multi-model 
mean rainfall simulations show a 
general statistical improvement over 
the mean values for all global climate 
models. By further downscaling to 
8 km, the rainfall pattern can be 
better resolved and the effects of 
topographical and other local features 
can be incorporated. See, for example, 
the study by Lal et al. (2008) which 
showed the benefits of high resolution 
by using CCAM with 8 km resolution 
to downscale NCEP reanalyses 
over Fiji for 10 years. As explained 
previously, due to computational and 
time constraints, only three of the six 

Figure 5.26: PDF statistic for annual rainfall (left) and maximum temperature (right). Multi-model mean for all global climate models 
(top), for five global climate models (middle), and six CCAM 60 km simulations averaged to 2.5 degree grid for validation (bottom).

CCAM 60 km simulations were further 
downscaled to 8 km. In this section, 
validation for Papua New Guinea and 
Fiji is presented. A more complete 
validation for these and other 8 km 
downscaled regions will be presented 
in a future technical report.

One of the issues in evaluating rainfall 
for the 8 km CCAM simulations is 
the lack of high-resolution gridded 
datasets to compare against. The 
TRMM satellite-based dataset chosen 
is available at 25 km resolution for 
the period 1998–2010 only, while the 
CRU dataset is at 50 km and is based 
upon station data (hence land only 
(Section 2.2.1)). 

Evaluation of the downscaled annual 
rainfall for Papua New Guinea is 

presented in Figure 5.27. The top 
row in Figure 5.27 shows the 
rainfall pattern at 200 km resolution, 
approximately the resolution of the 
global climate models. Although the 
overall pattern in the various models 
is similar to the TRMM data, the 
magnitude is slightly better captured 
by the 8 km simulation. However, the 
key reason for the higher resolution 
simulations is to give more detail than 
is available from the coarse resolution 
global climate models. In particular, 
the pattern of higher rainfall along 
the slopes of the mountains is better 
captured by the 60 km simulations, 
and in even more detail in the 8 km 
simulations, though the observational 
dataset is not fine enough to evaluate 
if all the added detail is realistic. 
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Comparison of the upper row with the 
lower row demonstrates the added 
information at the higher resolutions. 
The validity of the technique has been 
shown in a previous study by Lal et 
al. (2008) using the same model for 
regional climate simulations over Fiji.

5.3.2.1 Rainfall and 
Temperature Validation for 
Nadi, Fiji

As indicated in the previous section, 
as finer resolution downscaled 
simulations are run, more detail in 
the simulations is provided than is 
available in gridded observational 
datasets. An alternative method of 
validation is to compare model grid 
point data with station observations. 
In this section, the simulations from 
global climate models and CCAM 
simulations are evaluated for Nadi, 
Fiji. The observed rainfall climatology 
from various datasets for 1980–1999 
is shown in Figure 5.29 (left). There is 

Figure 5.27: Papua New Guinea 1980–1999 annual rainfall climatology (mm per day) for TRMM satellite data (left); CRU data set 
(middle left); six global climate models multi-model mean (middle); six CCAM 60 km multi-model mean (middle right); and three CCAM 
8 km multi-model mean (right). Top row all re-gridded to 200 km grid, bottom row all on the original grid for each dataset.

A similar comparison of rainfall for Fiji 
is shown in Figure 5.28. Fiji is made 
up of smaller islands than Papua New 
Guinea, with less complex topography. 
Again, the top row shows that all 
models capture the large-scale pattern 
reasonably well, with more rainfall to 
the north and less to the south. At the 
full resolution of the various datasets 
(bottom row), the topographic effect 
on the rainfall begins to show, with 
more rainfall on the eastern side of the 
main islands and less on the western 
sides (Lal et al., 2008). This is mainly 
a result of the easterly trade winds 

greater rainfall in November-April, 
with less rainfall in the other months. 
All datasets have generally similar 
seasonal cycles, though some 
differences are evident, especially in 
February, March and December.

Comparisons of rainfall for the 
global climate models, CCAM 
60 km simulations and CCAM 8 km 
simulations are shown in Figure 5.29 
(right). The larger spread of the 
global climate models (shown by the 
green dashed lines) is evident, with 
a tendency to underestimate the 
seasonal cycle of rainfall. The CCAM 
60 km simulations of the seasonal 
rainfall cycle are closer to the station 
observations than those of the global 
climate model. The 8 km simulations 
tend to best capture the rainfall cycle, 
though they tend to overestimate 
rainfall amounts.

flowing over mountains on the island, 
rising on the eastern side, resulting in 
more rainfall, and descending on the 
downwind side, causing less rainfall.
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Figure 5.28: Fiji 1980–1999 annual rainfall climatology (mm per day) for TRMM satellite data (left); CRU (middle left); six global climate 
models model mean (middle); six CCAM 60 km multi-model mean (middle right); and three CCAM 8 km multi-model mean (right). Top 
row all re-gridded to 200 km grid, bottom row all on the original grid for each dataset.

Figure 5.29: Evaluation of 1980–1999 rainfall (mm per day) for Nadi, Fiji. (Left) Monthly plot from various observational data sources: 
Nadi observations (black line), CMAP (red line), CRU (blue line), GPCP (green line) and TRMM (cyan line). (Right) Monthly plots for Nadi 
observations (black line), average of the global climate models (solid green line with +/- two standard deviations dashed green lines), 
CCAM 60 km (solid blue line with +/- two standard deviations dashed blue lines) and CCAM 8 km (solid red line with +/- two standard 
deviations dashed red lines). 
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The validation of daily temperature for 
Nadi, Fiji is presented in Figure 5.30. 
The multi-model means for the global 
climate models and the CCAM 
60 km simulations show quite 
good agreement with the station 
observations, although the global 
climate models tend to be warmer 
by around 1°C from February to July. 
The CCAM 60 km simulations also 
have a cold bias of about 1°C for 
most of the year. The CCAM 8 km 
simulations are closest to the observed 
seasonal cycle of temperature. The 

seasonal cycle of maximum and 
minimum surface air temperature 
(Figure 5.31) indicates a cold bias in 
maximum temperatures and warm 
bias for minimum temperatures in the 
CCAM 60 km simulations. The CCAM 
8 km simulations are very close to the 
observed maximum temperatures, 
with a 1°C cold bias in minimum 
temperatures.

Figure 5.30: Evaluation of 1980–1999 monthly average temperature (mm per day) for Nadi, Fiji. (Left) Monthly plots for Nadi 
observations (black line), global climate models (solid green line with +/- two standard deviations dashed), CCAM 60 km (solid blue 
line with +/- two standard deviations dashed) and CCAM 8 km (solid red line with +/- two standard deviations). (Right) Frequency 
distribution plots for surface air temperature using same colour scheme as in the left hand figure.

Figure 5.31: Monthly plots of surface 
air maximum (Tmax) and minimum 
(Tmin) temperatures (°C) for the grid 
point representing Nadi, Fiji for the 
period 1980–1999. Nadi observed Tmax 
and Tmin are thick black line; CRU 
observed values at nearest grid point 
are dashed black line, individual CCAM 
60 km simulated Tmax are red and Tmin 
are blue; while individual CCAM 8 km 
simulated Tmax are green and Tmin 
are cyan. 

general, all simulations capture the 
observed distribution reasonably well, 
though the global climate models 
tend to have a flatter peak to the 
distribution (green line), while the 
CCAM 60 km (blue line) and 8 km 
(blue line) simulations capture the 
peak more accurately, though with a 
probability slightly too high. In general, 
the global climate models have 
too broad a distribution, while the 
CCAM simulations have too narrow 
a distribution. 

Probability plots of the daily 
temperature for the various runs are 
also shown in Figure 5.30 (right). In 
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5.3.3 Additional 
Regional Climate Model 
Simulations
In this section, validation of the various 
additional regional climate model 
simulations which were completed 
for the PCCSP is summarised briefly. 
As was noted in Chapter 4, there 
were three sets of runs completed: 
one set nested directly within NCEP2 
for 1980–2000, and two sets nested 
within the CCAM 60 km simulations 
driven by GFDL-CM2.1 GCM 
sea-surface temperatures, one for the 
period 1980–2000 and the other for 
the period 2045–2065 (Figure 4.4). 
Results for the first two sets of regional 

climate simulations are presented in 
this section, while those of the third are 
presented in Chapter 7.

Comparison of the annual rainfall for 
the various regional climate models 
nested in the NCEP2 reanalyses 
(Figure 5.32) shows a large range 
of results. A key element of regional 
climate modelling is the level of impact 
provided by the lateral boundary 
conditions. Some of the models used 
some large-scale forcing (CCAM - top 
right centre, WRF - middle left, and 
Zetac - middle right) which provides an 
additional constraint on the simulation 
in the interior of the domain. However, 
this does not seem to have made 
significant impact on the quality of the 

simulations. CCAM has too strong 
an ITCZ, while most other models 
are too weak, apart from PRECIS, 
which is the best at capturing the 
ITCZ. For the southern portion of the 
domain, all models have difficulty 
correctly capturing the position and 
intensity of the SPCZ, with WRF 
probably the best. The impact on the 
simulation of using different convection 
parameterisation schemes can be 
seen by comparing the four examples 
for RegCM in the bottom row of 
Figure 5.32. Significant variation can 
be seen between the various runs. The 
way the models treat convection can 
have a very large impact on the quality 
of the simulation results, especially in 
this region.

Figure 5.32: Annual rainfall (mm per day) for observed datasets and additional regional climate model simulations nested within 
the NCEP2 reanalyses. (Top): Observed datasets CMAP (left) and GPCP (centre left). CCAM at 60 km run with spectral nudging of 
large-scale fields of temperature, winds and surface pressure (centre right) and CCAM 60 km multi-model mean of runs using GCM 
sea-surface temperatures (right). (Middle): Various regional climate models nested directly within 6-hourly NCEP2 reanalyses. Note that 
the Zetac model is only for January-March, not annual. (Bottom): RegCM model run with four different convection schemes: Emanuel 
(left), Grell with Fritsch-Chappell (centre left), Anthes-Kuo (centre right) and Grell with Arakawa-Schubert (right).
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Validation statistics, similar to those 
presented for global climate models 
and CCAM 60 km simulations 
(Table 5.5) are presented in Table 5.6 
for runs nested within NCEP2 for the 
period 1980–1999. The statistics are 
computed over the simulation domain, 
excluding some boundary rows where 
the limited-area models have problems 
(Section 4.5.1). The PRECIS model 
has the lowest bias and mean absolute 
error, while CCAM has the lowest root 
mean square error and correlation, 
i.e. it captures the pattern best. 
The results support the discussion of 
Figure 5.32.

In summary, the MM5 regional model 
did not perform satisfactorily, with 
large error statistics and poor pattern 
correlation, and will not be used in the 
downscaled projections in Chapter 7.

5.3.4 Evaluation of 
Statistical Downscaling
To evaluate the statistical downscaling 
methodology used in this project 
(Section 4.7), an example comparison 
between the simulated temperature 
and rainfall data and the observed data 
at Nadi, Fiji is presented (Figure 5.33).

Table 5.6: Validation of annual rainfall for various regional climate models nested within 
the NCEP2 reanalyses for the period 1980–1999. The verifying dataset is the CMAP 
dataset. Equivalent comparison of GPCP rainfall analysis with CMAP is shown in last 
row. Bold numbers show best performance of the models.

Annual rainfall (mm per day) 
(Nested within NCEP2)

Bias Eabs RMS error rp

CCAM60 1.05 1.13 1.38 0.93

WRF -1.14 1.26 1.49 0.92

PRECIS 0.46 1.05 1.41 0.86

MM5 -2.67 2.95 3.64 0.46

REGCM_E -2.27 2.58 3.14 0.57

REGCM_FC -2.58 2.65 3.06 0.75

REGCM_AS -3.78 3.84 4.30 0.51

REGCM_AK -3.88 3.93 4.35 0.57

GPCP -1.10 1.21 1.38 0.96

For the second set of climate change 
simulations, the regional models 
were nested within a global climate 
model. Here, the data from the CCAM 
60 km simulations with bias-corrected 
sea-surface temperatures from the 
GFDLCM2.1 global climate model 
were used to drive the lateral boundary 
conditions of the limited-area models. 
In order to assess the impact of this 
technique, the validation statistics 
were recomputed for 1980–2000 from 
these simulations (Table 5.7). Again, 
the PRECIS model bias is the lowest, 
though the CCAM 60 km simulation 

has the lowest mean absolute 
error and root mean square error. 
Interestingly, although there is some 
decrease in quality of the simulations, 
the statistics do not show large 
changes when compared with the runs 
nested within NCEP. This suggests 
that the lateral boundary data were not 
causing significant negative impact on 
the limited area models’ climatology.

Table 5.7: Validation of annual rainfall for various regional climate models nested within 
the CCAM 60 km simulations using GFDL-CM2.1 sea-surface temperatures for the 
period 1980–1999. Verifying dataset is the CMAP dataset. Bold numbers show best 
performance of the models.

Annual rainfall (mm per day) 
(Nested within CCAM 60 km 
GFDLCM2.1)

Bias Eabs RMS error rp

CCAM60 0.29 0.91 1.30 0.85

WRF -1.42 1.68 1.90 0.85

PRECIS 0.23 1.41 1.72 0.84

MM5 1.27 5.52 7.20 0.58

REGCM_E -0.68 1.60 2.34 0.67

This figure shows that the statistical 
downscaling and bootstrap simulation 
procedure is capable of representing 
the year on year variation of standard 
deviations of temperature (top panel), 
and also is able to accurately represent 
the short-term autocorrelation 
structure of the temperature and 
rainfall data (four subplots on the 
lower panels). Further validation at 
this specific location is shown in 
Figure 5.34. The Linear Mixed Effect 
State-Space Model (Section 4.6) 
predicts minimum and maximum 
temperature and proportion of rain 
days well, but median rainfall on 
rain days is less well predicted. This 
is not unexpected and is similar to 
experience from dynamic models. 
Similar plots were obtained for all 
other locations for which statistical 
downscaling was performed. These 
also indicated that temperature was 
predicted quite accurately by the 
model and that rainfall was less well 
predicted. Further out of sample 
validation results of the Linear Mixed 
Effect State-Space Model can be 
found in Kokic et al. (2011).
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Figure 5.33: (Top) Box plots of multiple 
simulations of the standard deviation of daily 
maximum temperature in July compared to the 
observed standard deviation. (Bottom) Partial 
autocorrelation plots of observed and simulated 
maximum temperature and rainfall over the time 
period that observed data are available. All plots 
are for Nadi, Fiji.

Figure 5.34: Observed monthly data 
versus predicted values from the 
Linear Mixed Effect State-Space 
Model. All plots are for Nadi, Fiji.
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5.3.5 Summary: 
Dynamical and 
Statistical Downscaling
The dynamically downscaled 
simulations provide an improved, 
more detailed representation of most 
aspects of the current climate. At 
higher resolutions, the simulations 
are able to capture more detailed 
topographic and coastal effects of 
the islands on the atmospheric flow. 
One issue is the lack of suitable 
observational datasets to validate 
the downscaled simulations. Gridded 
datasets are of generally coarser 
resolution than the simulations. 
Comparing downscaled results against 
stations is also not totally appropriate, 
since the model simulations give a grid 
box average rather than the point value 
of a station.

The utility of validating the statistical 
downscaled results is less clear 
since the model is trained on the 
observational data. Care must be 
used not to interpret the accuracy of 
the statistical downscaled results for 
the current climate as an indication 
of the reliability of the technique for 
future climates.

In summary, although better 
performance of the downscaled results 
for most aspects of the current climate 
does build confidence in their use in 
projecting future climates, there is still 
some uncertainty that the downscaled 
models will perform accurately in a 
future climate, and the results must be 
used with a degree of caution, as with 
global climate model simulations.
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5.4.1 Introduction
It is difficult to make climate change 
projections of tropical cyclone activity. 
There are two fundamental reasons 
for this. The first is that the features 
of a tropical cyclone that cause 
damage occur at a spatial scale 
smaller than can be resolved by the 
climate models, particularly global 
climate models. These include the 
eye wall, the zone of high winds, 
heavy rainfall, wave action and storm 
surge. A consequence of this is 
that the models do not adequately 
simulate tropical cyclone behaviour 
when applied to current climate. 
Conventional wisdom suggests that 
without developing appropriate scale 
reduction or downscaling techniques, 
the models cannot be used to project 
future behaviour of tropical cyclones 
with any confidence (Knutson et al., 
2010). However, the direct application 
to climate models of the Curvature 
Vorticity Parameter (CVP) method 
(Section 5.4.3.1) and a modified 
CSIRO Tropical Cyclone detector 
and tracker (modified using insight 
developed in this project) has yielded 
promising results.

5.4 Tropical Cyclones in Global and 
Downscaled Models

The second reason for the difficulty in 
making projections of tropical cyclone 
behaviour is that the features of current 
climate that strongly influence tropical 
cyclone numbers and intensity have 
some systematic biases in climate 
models. These include the regional 
patterns of sea-surface temperature 
as well as the major climate features 
and patterns of variability in the 
PCCSP region, including ENSO, the 
ITCZ, West Pacific Monsoon and the 
SPCZ. The tropical cyclone research 
carried out for the PCCSP mainly 
addressed the first of these issues: the 
horizontal resolution or downscaling 
problem. The methods used are 
those described in Section 4.8 of 
this publication.

5.4.2 Tropical Cyclones 
in Downscaled Models
The CCAM modelling system used in 
this study includes bias-corrected sea-
surface temperature as a boundary 
condition inherited from the host global 
climate model, and thus is expected 
to have significantly different regional 
circulation features to the host. 
Theoretically, the 60 km horizontal 
resolution enables more realistic 
cyclone circulations to develop than in 
the host global climate model. These 
circulations are detected using the 
CSIRO Direct Detection (CDD) method 
described in Section 4.8.

The spatial distribution of tropical 
cyclone genesis locations, detected 
from CCAM using the six different 
host global climate models for the late 
20th century (1981–2000) compare 
well with each other and with the 
observed climatology derived from 
the IBTrACS data (Figure 5.35). 
Overall, the late 20th century cyclone 
climatology is well reproduced in the 
Southern Hemisphere. However, it 
underestimates cyclone frequency 
in the Northern Hemisphere in the 
eastern North Pacific and the North 
Atlantic. The performance is more 
apparent in Figure 5.36 which shows 
the observed and downscaled annual 
cyclone numbers for four of the six 
models, globally, by hemisphere and in 
three PCCSP sub-basins.
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Over the PCCSP region, results show 
that CCAM is able to reproduce 
the climatology of tropical cyclone 
numbers well in the south-west Pacific 
sub-basin (0–35ºS; 130–170ºE; 
Figure 5.36d) and the north Pacific 
sub-basin (0–15ºN; 130º–180ºE; Figure 
5.36f). However, the spatial distribution 
of tropical cyclones detected in the 
South Pacific shows fewer tropical 
cyclones east of 180º longitude, which 
explains the lower number of cyclones 
detected in the south-east Pacific 
sub-basin (0–35ºS; 170ºE–130ºW) 
compared to the observed climatology 
(Figure 5.36e). One needs to be aware 
of the greater uncertainty in cyclone 
frequency projections in this sub-basin 
due to the weaker performance of 
the downscaled models, which has 
implications for country specific 
projections for the PCCSP Partner 

5.4.3 Tropical Cyclones 
in Global Climate Models
Three analysis methods have been 
applied to the outputs from global 
climate models. These methods are 
(1) the Curvature Vorticity Parameter 
method, (2) the CSIRO Direct 
Detection method and (3) the Genesis 
Potential Index. These are described 
in detail in Section 4.8. Assessment of 
the late 20th century tropical cyclones 
in global models based on these 
methods is discussed in this section, 
and the results are compared with the 
observed tropical cyclone climatology.

Figure 5.35: Spatial distribution of annual tropical cyclone genesis (a) in IBTrACS data, (b) detected in ERA-Interim using the CSIRO 
Direct Detection method and (c-h) detected in CCAM simulations for different host global climate models. Occurrence is expressed as 
the number of cyclone formations per year within a 5 x 5 degree grid cell.

Countries that reside in that sub-basin 
(which include Fiji, Tuvalu, Samoa, 
Tonga, Niue and Cook Islands, as well 
as eastern parts of Vanuatu and the 
Solomon Islands).

5.4.3.1 Curvature Vorticity 
Parameter Method

The performance of the objective 
Curvature Vorticity Parameter (CVP) 
detection technique (Section 4.8.3) 
developed in this study has been assessed 
and applied directly to global climate 
models. This approach complements the 
CCAM-based downscaling method and 
provides an independent assessment of 
the ability of global models to generate 
tropical cyclone-like structures. A 
comparison of Figure 5.37(a) and (b) 
shows the detection method reproduces 
the observed spatial distribution of tropical 
cyclones and tropical cyclone numbers 
well. Figure 5.38 also shows that the 
observed annual tropical cyclone numbers 
(red bars) and those detected using the 
CVP approach (green bars) also compare 
well globally, in the two hemispheres, and 
in the three PCCSP sub-basins.
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Figure 5.36: Annual number of tropical cyclones simulated using the CCAM downscaling methodology for different host models, and 
that observed in the IBTrACS data, in different hemispheres (left) and in the PCCSP region (right). Bars indicate distribution in annual 
mean number of tropical cyclones (at the 95% significance level) obtained via a statistical technique known as bootstrap sampling (i.e. 
repeat sampling).

Figure 5.37: Spatial distribution of annual tropical cyclone genesis (a) in IBTrACS data, (b) detected in ERA-Interim and (c-f) detected 
in different global climate models using the Curvature Vorticity Parameter method. Occurrence is expressed as the number of cyclone 
formations per year within a 5 x 5 degree grid cell.
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The global climate models (excluding 
GFDL-CM2.01) reproduce the 
observed spatial distribution of 
tropical cyclones well (Figure 5.37), 
although the mean annual tropical 
cyclone numbers show some 
variation between the models 
(blue bars in Figure 5.38). Like the 
downscaled results, too few cyclones 
are detected in the North Atlantic. 
The healthier cyclone numbers in 
the north-east Pacific compared to 
the downscaled results (excluding 
1  The Curvature Vorticity Parameter technique 
uses humidity as a detection criterion. Due to a 
dry bias in the GFDL 2.0 model many circulations 
were not detected. The CSIRO Direct Detection 
technique does not use humidity and is thus not 
negatively affected by the dry bias.

into different basins, differences 
between the observed and detected 
tropical cyclone numbers become 
more apparent (Figure 5.38d-e). 
For example, ECHAM5/MPI-OM 
and CSIRO-Mk3.5, in the 
south-east (Figure 5.38e) and 
northern sub-basin (Figure 5.38f), 
respectively, deviate substantially 
from climatology. The overestimation 
in ECHAM5/ MPI-OM is due to more 
tropical cyclones detected east of 180º 
(Figure 5.37d) than those observed.

1  The Curvature Vorticity Parameter technique uses humidity as a detection criterion. Due to a dry bias in the GFDL-CM2.0 model many circulations 
were not detected. The CSIRO Direct Detection technique does not use humidity and is thus not negatively affected by the dry bias.

GFDL-CM2.0), contribute to the 
overall better reproduction of the 
Northern Hemisphere cyclone 
climatology (compare Figure 5.36c 
and Figure 5.38c).

In the PCCSP region using the CVP 
technique, two global climate models 
(ECHAM5/MPI-OM and GFDL-CM2.1) 
reproduce the total number of tropical 
cyclones very well (i.e. errors of 
only 5% and 7% respectively, not 
shown). However, when divided 

Figure 5.38: Annual number of tropical cyclones detected in different global climate models using the Curvature Vorticity Parameter 
scheme, and that observed in the IBTrACS data, in different hemispheres (left) and in the PCCSP region (right). Bars indicate 
distribution in annual mean number of tropical cyclones (at the 95% significance level) obtained via a statistical technique known as 
bootstrap sampling (i.e. repeat sampling).
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5.4.3.2 CSIRO Direct 
Detection Method

The CSIRO Direct Detection (CDD) 
method (Section 4.8.2) has been 
applied to nine global climate models 
for which appropriate data are 
available (Figure 5.39). The average 
spatial distribution of tropical 
cyclones compares favourably with 

Figure 5.39: Spatial distribution of annual tropical cyclone genesis numbers using the CDD method applied to the CMIP3 global 
models. (a) is the average climatology based on the results from 8 global models with realistic cyclone climatology and (b-f) are 
individual results for a subset of the global models considered. Occurrence is expressed as the number of cyclone formations per year 
within a 5 x 5 degree grid cell.

the observed climatology although 
there is significant variation between 
the models in the details of this 
distribution. For example, there are 
no tropical cyclone-like vortices 
detected in the PCCSP region in the 
MIROC3.2 (medres) model. Thus the 
MIROC3.2 (medres) model was not 
used in further analysis using the 

CDD and results are based upon the 
eight models that produce realistic 
cyclone climatologies over the study 
region. In common with the methods 
described above, the CDD method 
applied to global models detects few 
cyclones in the North Atlantic.
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5.4.3.3 Genesis Potential 
Index Method

The Genesis Potential Index (GPI, 
Section 4.8.1) of Emanuel and 
Nolan (2004) was calculated for the 
17 CMIP3 global models for which 
daily data are available. A subset 
of 14 models2 that were found to 
satisfactorily represent the large-scale 
climate features of the region is used 
in the analysis shown in Figure 5.40. 
The GPI method, a measure of the 
large-scale environmental conditions 
conducive to cyclone formation, was 
developed and calibrated using the 
NCEP reanalyses. When applied 
to the outputs of global models or 
other reanalyses, there can be large 
differences in results, as illustrated in 
Figure 5.40(b) and (c). When averaged 
over the 14 models, the more intense 
values of the index represent the 
observed genesis regions reasonably 
well (Figure 5.40(a)), although the 
spatial extent of the main genesis 
regions is too large.

2  The unsatisfactory global climate models 
that were removed from this analysis are those 
identified in Section 5.5.1

2  The unsatisfactory global climate models that were removed from this analysis are those identified in Section 5.5.1

Figure 5.40: Spatial distribution of annual tropical cyclone genesis numbers using the GPI method applied to the CMIP3 global climate 
models, (a) is the average climatology based on the results from 14 global models and (b) and (c) are results for the GFDL-CM2.1 and 
CSIRO-Mk3.5 models respectively. Occurrence is expressed as the number of cyclone formations per year within a 5 x 5 degree grid 
cell. Note that the scale in this figure differs from Figure 5.35.

5.4.4 Tropical Cyclone 
Wind Risk Hazard
Tropical cyclones present a significant 
hazard to countries situated in the 
warm tropical waters of the western 
Pacific. The hazards posed by these 
severe storms include extreme winds, 
storm surge inundation, salt water 
intrusion into ground water supplies, 
and flooding and landslides caused 
by the intense rainfall. Despite high 
exposure to tropical cyclones, there 
have been few studies attempting 
to quantify the hazard posed by 
these severe storms to this region. 
An exception is a limited number of 
detailed case studies that have been 
performed in support of developing a 
regional disaster insurance scheme 
similar to that implemented in the 
Caribbean (Shorten et al., 2003; 
Shorten et al., 2005). This study aims 
to address the limited understanding of 
the extreme wind hazard in this region 
by evaluating the wind hazard from 
tropical cyclones using a combination 

of historical tracks and downscaled 
climate models with Geoscience 
Australia’s Tropical Cyclone Risk Model 
(TCRM, Section 4.8.4).

Historical track data from the IBTrACS 
tropical cyclone database for the 
period 1981–2008 were fed into 
TCRM to generate estimates of 
the maximum 3-second gust wind 
speed from tropical cyclones for a 
given return period. The 500-year 
return period wind speed is used 
as the primary measure of wind 
hazard for the following analysis 
since it is suitable for considering the 
design loads on residential buildings 
(AS/ NZS 1170.0:2002). It should 
be noted that these estimates are 
of regional wind speed and do not 
account for local factors such as 
terrain roughness, wind shielding 
effects and topographic acceleration.

The results are presented in Table 
5.8 for each of the 15 PCCSP 
Partner Countries. Where available, 
the 500-year return period wind 
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loading standard for each of the 
countries (HB 212-2002) is provided 
as a reference. The 500-year return 
period wind speed estimated from 
TCRM is found to exceed the design 
wind speeds by between 15% and 
30%. These results may not be 
unreasonable, however, given that 
there is evidence that the current wind 
loading standards may underestimate 
the cyclonic wind hazard (Rattan and 
Sharma, 2005). Spatial maps of the 
500-year return period cyclonic winds 
are shown in Figure 5.41.

Table 5.8: Cyclonic wind hazard (metres per second) for the PCCSP Partner Countries. 
Values are taken as the median wind hazard found in a 2 degree x 2 degree region 
centred on each country’s capital city.

Country
Return period wind hazard Standard

25yr 50yr 100yr 500yr 500yr

Cook Islands 68 77 84 95 -

East Timor 44 55 62 75 -

Federated States of Micronesia 50 58 64 74 -

Fiji 58 64 69 76 66

Kiribati - - - - -

Marshall Islands 54 64 71 82 -

Nauru - - - - -

Niue 63 71 77 86 -

Palau 57 65 71 80 -

Papua New Guinea 33 42 48 58 45

Samoa 62 69 75 84 66

Solomon Islands 34 41 46 53 45

Tonga 64 70 75 82 66

Tuvalu 35 41 46 53 -

Vanuatu 69 75 79 86 66

Figure 5.41: The 500-year return period 
wind speeds for (a) north-west Pacific, 
(b) East Timor and (c) south-west Pacific 
based on the historical track record.

5.4.5 Summary: 
Simulation of Tropical 
Cyclones
The CDD and CVP projection methods 
have provided realistic late 20th century 
tropical-cyclone climatologies and are 
suitable for cyclone detection of the 
late 21st century climate simulations 
introduced in Chapter 7. These 
are subsequently used to produce 
projected changes in tropical cyclone 
frequency and wind hazard by the late 
21st century for the PCCSP region.
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option of eliminating any models that 
display unsatisfactory performance 
in simulating key aspects of the 
Pacific climate (see Section 4.4.1 for 
justification of this approach).

To assist in the identification of poor 
performing models, much of the model 
evaluation summarised in Sections 
5.2.1, 5.2.2 and 5.2.3 (or slight 
variations thereof) was combined in 
order to calculate a normalised skill 
score for each model, with respect 
to the simulation of surface air 
temperature, rainfall, surface wind, 
SPCZ, ITCZ, West Pacific Monsoon, 
ENSO, model drift and long-term 
sea-surface temperature trends over 
the PCCSP region (Irving et al., in 
press; Figure 5.42).

From the results of Irving et al. 
(in press) and additional analysis 
presented in the individual sections of 
this chapter, the following models were 
eliminated in calculating all PCCSP 
climate projections, for the reasons 
outlined (see also Table 5.9):

•	 GISS-EH, INM-CM3.0 and PCM: 
These models perform particularly 
poorly with respect to the simulation 
of many aspects of the present 
day climate over the PCCSP region 
(Sections 5.2.1 and 5.2.4).

•	 INGV-SXG: This model has a large 
climate drift (Section 5.2.2.5) and 
does not provide the required 
control simulation data to remove 
this drift from projected changes.

•	 GISS-AOM and GISS-ER: These 
models perform particularly poorly 
with respect to their simulation of 
the present day ENSO (Section 
5.2.3.1), which was considered to 
be a critical aspect of the PCCSP 
region climate.

In addition, the following models were 
eliminated for specific projections, 
due to critical deficiencies relating to 
isolated climate features:

•	 MIROC3.2(hires) and 
MIROC3.2(medres): These models 
were eliminated in determining 
projections of future SPCZ activity, 
as they perform particularly poorly 
in simulating the present day 
characteristics of the SPCZ (Section 
5.2.3.3; Brown et al., in press).

•	 MIROC3.2(hires): This model 
was eliminated in determining 
projections of future ITCZ activity, 
as it performs particularly poorly 
in simulating the present day 
characteristics of the ITCZ 
(Section 5.2.3.4).

•	 MIROC3.2(medres): This model 
was eliminated in determining 
projections of future West Pacific 
Monsoon activity, as it performs 
particularly poorly in simulating the 
present day characteristics of the 
monsoon (Section 5.2.3.5).

5.5 Model Reliability and Implications 
for Projections

5.5.1 Use of Global 
Models for Climate 
Projections
As demonstrated throughout this 
chapter, the ability of individual CMIP3 
models to simulate the western 
Pacific climate can vary depending on 
which aspect of a model simulation is 
considered. While this makes it difficult 
to identify a group of best performing 
models, it is possible to identify a 
small subset of models that perform 
consistently poorly across many 
aspects of a climate model simulation, 
or that perform poorly on critical 
aspects of a simulation. The approach 
adopted for determining climate 
change projections for the PCCSP 
region has been to equally weight all 
participating CMIP3 models, with the 

Figure 5.42: Summary of the normalised CMIP3 model skill scores for surface air 
temperature (tas), rainfall (pr), surface wind (speed and direction combined), SPCZ, 
ITCZ, West Pacific Monsoon, ENSO, drift and long-term sea-surface temperature 
trends (see Irving et al., in press for details). The connected solid black dots represent 
the average skill score across all categories. Increasingly negative scores indicate better 
model performance.
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Table 5.9: CMIP3 models eliminated for the purposes of determining climate projections, based on an evaluation of their present day 
climate simulation.

Type of projection Eliminated models Reason for elimination

All projections GISS-AOM

GISS-ER

Very weak or no ENSO (both models) and a poor simulation of 
extreme events (GISS-ER)

INGV-SXG Model drift too large

GISS-EH 
INM-CM3.0 
PCM

Overall poor performance (all three models) and a poor simulation of 
extreme events (GISS-EH, PCM) 

SPCZ projections MIROC3.2(hires) 
MIROC3.2(medres)

SPCZ poorly simulated

ITCZ projections MIROC3.2(hires) ITCZ poorly simulated

West Pacific Monsoon projections MIROC3.2(medres) West Pacific Monsoon poorly simulated

5.5.2 Use of 
Downscaled Models for 
Climate Projections
The large-scale climate of the CCAM 
global simulations was found to 
be closer to observations than the 
corresponding CMIP3 climate models 
in some aspects but less in other 
respects. These simulations do not 
fully incorporate atmosphere-ocean 
feedbacks which have been shown 
to be important for capturing some 
features, such as monsoon processes 

(cf. Wang et al., 2005). For these 
reasons, downscaled projections of 
changes in these climate features need 
to be treated with caution.

Further, due to the computational 
cost, only a limited number of the 
global climate models and emissions 
scenarios have been downscaled, so 
the full range of possible projections 
has not been sampled. While not all 
aspects of the large-scale CCAM 
climate represent an improvement 
over the CMIP3 global climate models, 
the 8 km resolution simulations 

substantially improve the simulation 
of local climate influences associated 
with factors such as topography and 
coastline. As with all projections, it is 
necessary to assess and understand 
the physical mechanisms associated 
with the various changes. In light of 
these findings, the level of confidence 
associated with downscaled climate 
projections is not uniform across the 
PCCSP region.
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