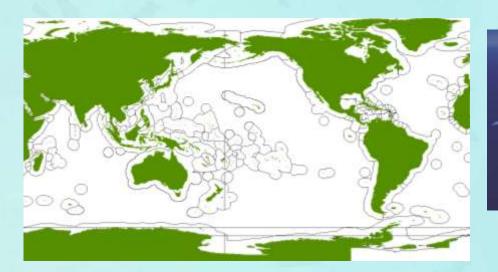
THE POTENTIAL IMPACT OF OCEAN ACIDIFICATION ON PELAGIC ECOSYEMS IN THE PACIFIC OCEAN Fisheries, Aquaculture and Marine Ecosystems (💫 Pêche, aquaculture et écosystèmes marins

Presentation Structure

- Overview of the fisheries of the Pacific Ocean
 - **Food Security**
 - **Economic Prosperity**
- Evidence of impacts on Pelagic Ecosystems
- Impacts on pelagic ecosystems for SIDS
 - **Economic**
 - Social considerations


Scientific team

Simon Nicol, Don Bromhead, Simon Hoyle, Brad Moore, Gerald Haberkorn (Secretariat of the Pacific Community; New Caledonia) Vernon Scholey, Daniel Margulies, Jeanne Wexler, Maria Stein, Cleridy Lennert-Cody (Inter-American Tropical Tuna Commission; USA) **Jane Williamson** (Macquarie University; Australia) **Jonathan Havenhand, Andrea Frommel** (University of Gothenburg; Sweden) Tatiana Ilyina (Max Planck Institute for Meteorology; Germany) **Patrick Lehodey, Inna Senina** (Collecte Localisation Satellites; France) **Brian Kumasi, Thomas Usu** (National Fisheries Authority; Papua New Guinea) **Berry Muller** (Marshall Islands Marine Resources Authority; Marshall Islands) **Philip Munday** Jeff Muir (James Cook University; Australia)

Western Pacific SIDS

- **Dominated by Islands and Atolls**
- 27,116,382 km² of Exclusive Economic Zones
- 98% coastal and oceanic habitats

Pêche, aquaculture et écosystèmes marins

Western Pacific SIDS

- Many are Remote and Isolated
- Mix of high and low density populations

Marshall Islands

- 29 Atolls and 5 Islands
- 181 km² land area (<1% of EEZ (2,131,000 km²))
- 24 inhabited
- Est. population = 53,158
- ~50% living on Majuro Atoll

Western Pacific SIDS

- Many are Remote and Isolated
- Mix of high and low density populations

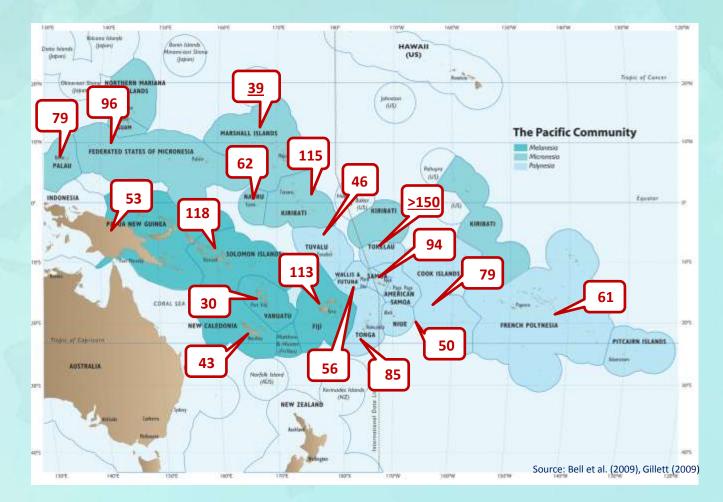
Marshall Islands

- 29 Atolls and 5 Islands
- 181 km² land area (<1% of EEZ (2,131,000 km²))
- 24 inhabited
- Est. population = 53,158
- ~50% living on Majuro Atoll

Papua New Guinea

- 5 main Islands, 139 small islands
- 462,840 km² land area (~15% of EEZ (3,120,000 km²))
- All inhabited
- Est. Population = 7,059,553 (~50% on coastline)
- ~13% living in urban centres

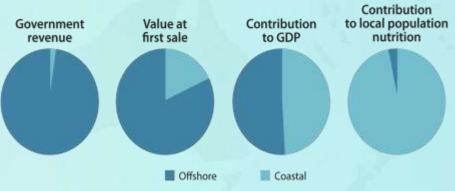
Western Pacific SIDS


- All Pacific SIDS are unique but have many similarities and dependencies
 - Government revenue
 - Kiribati derives >50% of its foreign revenue from the sale of fishing licenses to foreign fleets
 - typically around 20% for most Pacific Island Nations
 - 3% for larger SIDS like PNG & Solomon Islands
 - Health
 - world's highest levels of diabetes and obesity driven by changes in lifestyle and increasing imports of inexpensive, nutritionally-poor, energy dense food
 - Food security
 - Priorities to increase fish in diet to combat deteriorating health
 - Over-exploited coastal fisheries resources that are not able to support the food requirements in urban centres

Pêche, aquaculture et écosystèmes marins

How much fish do we eat?

• Fish consumption in coastal communities (kg/person/year)


Pêche, aquaculture et écosystèmes marins

- Coastal fisheries: coral reefs, mangroves and sea-grass habitats provide the bulk of subsistence animal protein
 - Supports a combination of subsistence fishing, local market, commercial operations, marine tourism
- Oceanic fisheries: industrial tuna fisheries, small scale artisanal fisheries for domestic markets

Pêche, aquaculture et écosystèmes marins

- Coastal fisheries provides 50% -90% of protein intake for coastal communities
- Very important for local incomes (provides around 50% of coastal households with 1st or 2nd source of income)

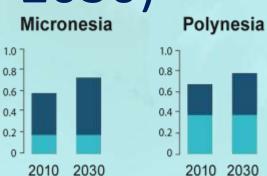
Industrial Tuna Fisheries

- Currently valued (ex-vessel) at USD5.62 Billion
- One stock over-fished
- One stock probably fished above economic sustainability
- Two stocks fully exploited
- Increasing need to supplement urban communities with industrial tuna catch
- Potential for negative effects of industrial fisheries on artisanal fisheries

Pacific SIDS Fisheries Dilemma

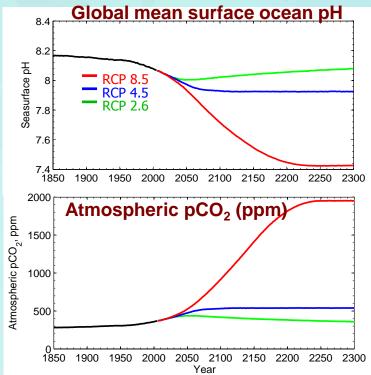
- Highly dependent on fisheries
- Many coastal fisheries over-exploited or at limits of sustainability
- Pelagic fisheries fully exploited
- Need to supplement food demands with pelagic fish
- Gain for food security = potential loss for government revenue
- Changes in tuna distribution and declines in abundance (e.g. Ocean Acidification) are likely to exacerbate this dilemma
- Increases in Pacific populations will further exacerbate this dilemma

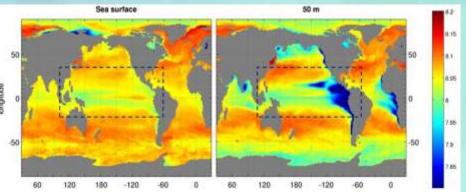


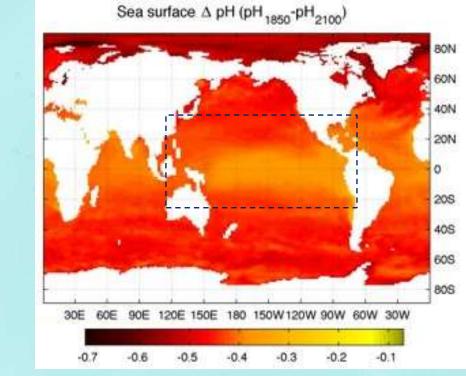

Pêche, aquaculture et écosystèmes marins

Future fish needs (to 2030)

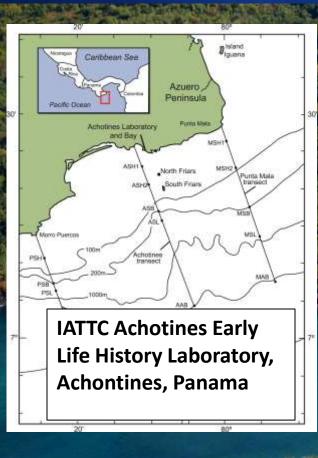
Population


Source: Bell et al. (2011)




Pêche, aquaculture et écosystèmes marins

Ocean Acidification


IPCC based RCP 8.5 projections estimate that while oceans will acidify (lower pH, higher pCO2) the degree of change will vary spatially in surface waters

Ocean Acidification effects on Pelagic Fisheries

Determine relationship, if any, between pCO2 and egg and larval growth/survival/development /condition

- 2 Trials (October and November 2011)
- Continuous duration: Eggs>>Larvae>>Post feeding larvae
- 12 x 840L tanks with egg incubator nets
- Each trial: 3 replicates of 4 target treatment pHs (pCO2s)
- Target pHs 6.9, 7.3, 7.7, 8.1
- Modelled pCO2 (estimated via CO2Sys Excel)
- Sampling: every 2-3 days

Results

 Effects detected within the plausible ocean acidities forecasted over the next 100 years.

pCO2	Survival	Growth	cellular damage*	Skeletal deformity	Otolith deformity	Genetic^
368 (8.1)						
2108 (7.6)#						
4732 (7.4)†						

* liver, kidney, and pancreas tissues
^ evidence for adaptation
#pCO2 projected for 2100
†pCO2 projected for 2200

What do these results mean

- Preliminary but suggest that <u>direct</u> and <u>indirect</u> effects on tuna are likely
 - Increase in natural mortality rates (i.e. less tuna)
 - Consequences for food security & government revenues
- Potential for genetic adaptation to future acidity levels
 Need to assess the likely time gap to adaptation
- Combined effects of increasing ocean temperatures and decreasing pH <u>could</u> be stronger
 - Additional trials would address this uncertainty.

Where to from here

- Need to include Acidity effects in population dynamics models (e.g. SEAPODYM) to forecast how the direct and indirect effects on natural mortality are likely to manifest themselves.
- Need to identify the communities that are most likely to impacted by a change in Pelagic species abundances
 - Rural; supplement with aquaculture & near shore large pelagics
 - Urban; consequences upon licensing arrangements of further supplementation with large pelagics
- Continue to reduce uncertainties in the empirical evidence on acidity effects.
- Monitoring to forewarn when adaptations should be implemented

ACKNOWLEDGEMENTS

- Pelagic Fisheries Research Program (PFRP)
- Staff of IATTC Achotines Laboratory
- Integrated Aqua Systems, Inc.
- Deutsche Gesellschaft f
 ür Internationale Zusammenarbeit (GIZ)
- 10th European Development Fund (Scientific Support to Coastal and Oceanic Fisheries Management in the Western and Central Pacific Ocean)