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Coral reefs
provide
ecosystem
services
(food
security,
livelihoods,
coastal
protection,
. efc.) to many
i 100s of
. millions of
people in the
tropics

especially
SIDS
| countries!

Why Should We Car'e"

Men and Women,
| Young and Old,
Poor and Richl

Coral reef &
| coastal
# ecosystems
¥ provide many
= benefits for
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Ocean Acidification is not

just a theory, it's happening
now
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Cor'al Reef Ecosys’rems

Reef buuldmg cor'als &
calcareous algae provide the
foundational 3-dimensional
habitat structures supporting
this rich biodiversity

Coral reefs are declining
worldwide due to multiple
stressors, including warming,
overfishing, pollution, disease,
ocean acidification.

Coral Cover (%)
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Caribbean: ~80% decline in
cover over 30 years
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©®AP Calcification/Recruitment

< Experiments/models have shown corals and reef-building
crustose coralline algae are highly vulnerable to OA:
& Reduced calcification/growth
< Reduced settlement/ r'ecr'ui’rmen‘r

i B L AF A e

| W|II ThlS happen in na’rur'e’) Or',, does nature provide more
resilience? > need long-term global observations

‘ AN Fr'om Ricke, Orr, Schneider & Caldeira (2013) )
l - - Environ. Res. Lett. 8 (2013)
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'S Extinction rates have
alr'eady increased ~100X

< Predicted to increase
>100X over next century

| > Lost Resilience?
2 > lost function?
7] 2 lost ecosystem services?
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Who will be impacted?: not all species
respond the same to reduced seawater pH

* Species that are fleshy
and CO, limited may
thrive

* Species that currently
live in highly variable
environments may be
best adapted

* Species that calcify, are g4
sessile, and are 3
taxonomically ‘simple’
may not survive




Coral loss

« 10 % of coral reef fishes are coral dependent, so directly
affected by coral loss

3%, .'f N..". ,,‘.3,._

« But, 75% of fish species declined following coral decline
» 50% of fish species declined by >50%

® Coral-dwelling species ™ Corallivores O Herbivores

I

A fish / A coral cover

Slide courtesy Phil Munday Wilson et al. 2006 Global Change Biology 12, 2220-2234
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INCORPORATING CLIMATE AND OCEAN CHANGE INTO AN

ECOSYSTEM APPROACH TO
FISHERIES MANAGEMENT (EAFM)
PLAN

‘ CORAL TRIANGLE
INITIATIVE
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EAFM and EBM need to take into account ocean
acidification (and climate change) because it will effect all
aspects of the marine ecosytems.

Rusty Brainard - NOAA



& Carbonate
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pH, O

8 Calcification
rates (Coring,
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© Bioerosion
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> Spatially distributed, consistent;,

repeatable, long-term observations
of key. indicatorsi to robustly
documeni: changes: ih naturallcoral
reefs attributable tol OA

Monitoring Ecological Impacts of OA
Pacific RAMP

February 2014

£ Microbial
diversity
(environmental
water sampling)

£ Benthic
rugosity.

2 Benthic &
Fish diversity &
abundance




Pacific Reef Assessment & Monitoring
Program (Pacific RAMP)

pCO2/Other

f— .H.m.r-—m"* Level 3 - MA

Level 2 — Partial

e Level 1-Partial
Philippines
Indegpesia

Papua New Guinea

Observing across gradients |
of environmental
conditions, biodiversity,

human impacts
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Island-scale Survey Design
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NOAA QCEAN ACIDEICATION PROGRAM

sy -y ST
o KIMGOS
240 sy

STR

ARMS

CAU

BMU
FPhotoquad

Topographic
Complexity

Water Sample

CTDs

Coral Coring

(-
NOAA
CORAL REEF

Site-scale Sampling Design




Mariana
Archipelago

Equator

Mean Reef pH

Northwestern
Hawaiian Islands

Front

More

®@§ Acidic

® Acidic

Pacific Remote

Equatorial &
Topographic
Upwelling

1,000 ™ 2,000
km

5110

Acidic

@

Less American
Acidic Samat

Subtropical

Main Hawaiian
Islands

@ s8o03-807
O 797-802
O 792-79
@ 785-791

SD of pH
I 001-002
I oo03

I 0.04

Total Alkalinity
= High : 2456




Coral Cover over Average Aragonite
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Kingman
Palmyra

b ¢ & Jarvis

Kin mane_ _Jarvis
alau®® > Calcification rates of massive reef-
Palmyrae building corals not a function only
e GBR .
Palay eRose of saturation state.

62 % > Also a function of food supply

P of

aama B con provided by upwelling.

average calcification (g/cm?2/yr)

With Anne Cohen's Lab WHOI



Coral Bioerosion is Higher at Low Saturation State & High Nutrients
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. @AP A Blodlver'S|Ty Shifts: ARMS b
- | RRECTICA AT 0 ~
Autonomous Reef Monitoring Structures (ARMS) are a sys’remcmc
tool to assess and monitor changes in indices of biodiversity. On-

going development of both taxonomic and genetic analytical

\ approaches to r'obus‘rly deTecT biodiversity shifts.
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Conclusuons

@ Ocean Acidification wnll mcr'easmgly |mpacT
marine ecosystems, coral reefs, fisheries, coastal

pro’rec’rlon & communmes in The SIDS coun’rmes'
ol L e, oy >

@ Need S|mple consus’ren‘r/sys’rema’rlc cos'r effec‘nve
- time series.observations of both physical/chemical &
key ecological parameters of coastal & coral reef
-ecosystems to inform policy & resource.management

2 decusuons

9Ur'ge SIDS coun’rrles to collabor'a’re and JOIH
GOA ON fo obtainh sTcmdar'dlzed observa‘rlonsl

e RusTy Bramar'd@noaa gov 808-725- *’
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