SPC Geoscience Division Private Mail Bag Suva Fiji Telephone: +679 338 1377 Fax: +679 337 0040

SPC Headquarters BP D5 98848 Noumea Cedex New Caledonia Telephone: +687 26 20 00 Fax: +687 26 38 18

MISSION REPORT

Staff Member(s)	Amandine Bosserelle and Peter Sinclair	
Countries visited	Kiribati (Tarawa)	
Programme	Water and Sanitation Programme – Water Resource Assessment and Monitoring Team (CAIA project)	
Period	26 to 29 October 2015	
	South Tarawa Drought Committee Meeting - October 2015	
Activities Description	The second South Tarawa Drought Committee meeting for 2015 was held at the Utererei Hotel in South Tarawa, Kiribati between the 27 th and the 28 th of October. The meeting objectives were to present and discuss key findings from Bonriki groundwater abstraction flow meter testing field investigations and the numerical groundwater modelling undertaken by the EU funded Climate and Abstraction Impacts in Atoll environments project, CAIA.	
	The South Tarawa Drought Committee, consisting of members from NDMO, MPWU, KMS, PUB, and MOHMS, is the relevant government body to consider findings that may affect the operations and overall sustainability of the Bonriki freshwater lens.	
	The flow meter testing conducted as part of the CAIA project's field investigations in June 2015 for the Bonriki and Buota water reserves was reported back to the committee. Existing fixed flow meters installed near the main transmission lines and galleries were tested against portable ultrasonic flow meters to determine:	
	 the actual abstraction data at all galleries and transmission pipes flow meters, and the variability and reliability of flow estimates given by existing meters. 	
	An over-estimated flow of 18% and 9% were measured at the Bonriki and Buota main transmission lines flow meters, respectively. Incorrect flow meter installation and turbulent-induced errors associated with the gallery pump- house pipe works are possible causes of the variability margin. Replacement of flow meters, replacement of pumps, and the design and implementation of correct flow meter installation to minimise turbulence are amongst the key remedial measures to ensure the accurate estimation of abstraction data for the modelling and sustainable management of the water reserves. The groundwater numerical modelling study and predictive scenarios are	

	being finalized and the key findings were discussed during the mesting:
	 being finalized and the key findings were discussed during the meeting: Impact assessment of different abstraction rates from 900 to 1,800 kL/d under different rainfall scenarios on the salinity of the water provided to South Tarawa residents. Impact assessment of clearing of existing vegetation and replacing with grass on the salinity and the volumes of the water available for network distribution. Identification of infiltration galleries which are contributing most to the increased salinity during dry periods with consideration to optimization of abstraction and determination of pumping rates under different rainfall scenarios to minimise impact to the freshwater lens.
Why is the activity important?	 The Bonriki Water Reserve is the main source of freshwater for the 52,000 residents of South Tarawa. The resource is under risk of salinization from over abstraction. The numerical model results are useful to improve the sustainability and consider impacts of possible climate and operational scenarios. Disseminating the preliminary results of the CAIA project to MPWU, PUB and key agencies is important as they can use the results to define priorities on the government activities and directions, and operational activities. Discussions with stakeholders were essential to define the output requirements from the modelling aspect of the study. The measurement of abstraction of groundwater from the Bonriki Water Reserve is reliant on the installed flow meters. Identifying the errors associated with the existing flow meter setup and recommendations to correct the identified problems is important to ensure accurate readings are obtained which will help with the overall management of the groundwater system.
Who benefits/stands to benefit from activity?	 MPWU, PUB, and the Government of Kiribati with better understanding of Bonriki's groundwater model, and how the modelling and field work results can be used to improve the operation, management and planning of the Bonriki Water Reserve. SPC – Presentation of results to the stakeholders and opportunity to inform about the CAIA project and links to other projects. Researchers and practitioners in the field of atoll hydrology and groundwater management with improved understanding of the issues facing a highly developed and relied upon atoll groundwater system.
Problems encountered	N/A
Follow Up	 Follow up with the ministry on the action items identified in the attached minutes. Follow up with recommendations from meeting regarding any additional work with regards to flow meters installation, improving the presentation and use of the model results and its application into the planning and operational management of the Bonriki Water Reserve's galleries field.

ANNEX I - Activity Name – Title / Task Profile Number	ACTION
Monday 26 th October 2015	
Travel from Suva to Tarawa	
Preparation of Drought Committee Meeting presentations	
Tuesday 27 th October 2015	
• Drought Committee Meeting – day 1 (See ANNEX III – Meeting	
Minutes)	
Wednesday 27 th October 2015	
Drought Committee Meeting – day 2 (See ANNEX III – Meeting	
Minutes)	
Thursday 27 th October 2015	Peter to email MPWU
<text><list-item></list-item></text>	about status of BN4 monitoring bore covered by UAE solar project clearing (Completed Fri 30/10/2015) Probe requires repair at TPS, Peter to arrange for repair when in Australia. Completed 12/11/2015. Probe to be sent to Fiji
Travel from Tarawa to Suva	

ANNEX II – Meeting Agenda CLIMATE AND ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS

DROUGHT COMMITTEE MEETING OCTOBER 2015

Dates: 27th and 28th of October 2015 - Venue: Utirerei Board Room, Ambo, Tarawa

27th October 2015

Time	Agenda
0930 - 1000	Review of previous minutes and identified actions
1000 - 1045	Bonriki abstraction update on June 2015 field investigations
1045 - 1115	Morning Tea
1115 - 1230	Review of new scenarios undertaken and presentation of results
1230 - 1330	Lunch at the Utirerei
1330 - 1500	Discussion on model results and potential implications on sustainable yield for Bonriki Water Reserve
1500 - 1530	Afternoon Tea
1530 - 1630	Review of Drought Plan for South Tarawa Dec 2013 V5. Monitoring of indicators and governance for altering abstraction rates and volumes

28th October 2015

Time	Agenda
0930 - 1030	Sustainable Yield –concept review and discussion of interim 12 year 2016-2028 sustainable yield – Bonriki Water Reserve
1030 - 1100	Morning Tea
1100 - 1230	Operation of Bonriki Water Reserve Monitoring: gallery salinity and freshwater lens thickness, Abstraction optimisation insights
1230 - 1330	Lunch at the Utirerei
1330 - 1430	Considerations for South Tarawa Drought Plan review - indicies and assignment of abstraction
1430 - 1500	Next steps / closing remarks
1500 - 1530	Afternoon Tea

NOTE: *Draft agenda, subject to minor changes

CLIMATE AND ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS

DROUGHT COMMITTEE MEETING

27th-28thOctober 2015

Minutes

The second 2015 Drought Committee meeting for Kiribati was held at the Utererei Hotel in South Tarawa between the 27th and the 28th of October. The meeting objectives were to discuss the key findings of CAIA project with in particular the preliminary results from the modelling predictive simulations that could be used by the Drought Committee to strength the existing Drought Response Action Plan that is administered by the Drought Committee. The meeting also discussed the key findings from the field investigations from June 2015 related to the abstraction verification work in the Bonriki Water Reserve and the possible links between CAIA and other projects such as the New Zealand Water Security project.

Present:

Name	Agency	Email
Riteta lorome	MPWU	ioromekuaravete@mpwu.gov.ki
Itienang Timona	PUB	itienangtimona@gmail.com
Mauna Eria	MET (KMS)	meanruti@gmail.com
Marella Rebgetz	KAP III	m.rebgetz@gmail.com
Aritu lotia	Health	aritu2012@gmail.com
Benjamin Tokataake	MPWU	secret@mpwu.gov.ki
Maiango Enota	MPWU	maiangoe@mpwu.gov.ki
Tearinaki Tanielu	DFAT - Australia High Commission	tearinaki.tanielu@dfat.gov.au
Peter Sinclair	SPC	peters2@spc.int
Amandine Bosserelle	SPC	amandineb@spc.int

Meeting Chair:

The meeting chair was shared between the following persons, due to commitments with other ongoing meetings.

Benjamin Tokataake MPWU Meeting Chair during the morning session on Tuesday 27th Oct Meeting Chair (Continue):

Riteta lorome

MPWU Meeting Chair during the afternoon sessions on Tuesday 27th Oct

Maiango Enota

MPWU Meeting Chair during the sessions on Wednesday 28th Oct

DAY 1 – Tuesday 27TH OCTOBER 2015

Time	Age	enda/ Activity	Actions
1015	1.	Registration of the attending membersIntroduction by the chair Benjamin Tokataake to the meeting	
1050		 Summary of the PICOF meeting (Suva, Fiji, October 2015) and review of regional statement by Mauna/Riteta/Peter. Mauna indicated that Butaritari was experiencing a reduced rainfall anomaly suggesting drought warning should be in place based on analysis of 3 month indicie approach. However impact on the ground did not at this stage warrant water conservation measures due to the high rainfall generally experienced Review of last meeting action plan and activities by Peter 	
1030	2.	Bonriki abstraction update	It was agreed that the
-		• Presentation by Peter on the findings from the comparison of	water quality
1120		 the fixed flow meters and the ultrasonic flow meter readings: Purpose, method and approach undertaken by PUB, KAPIII and SPC staff. Meters at the Bonriki and Buota main transmission lines are overestimating abstraction by 18% and 9%, respectively. Incorrect installation resulting in turbulence is causing the over reading errors in the meters. Even new meters demonstrate incorrect readings. Replacement of older flow meters, meters on main transmission lines are a matter of urgency. Redesign flow meter setup for galleries and at the main transmission lines to ensure that meters are 	instrument from PUB will be checked and calibrated on the next day if available.
		 installed correctly. Draft report available for discussion provided to PUB and MPWU Some recent salinity measurements seem low (below 400 μS/cm) and SPC staff will collect data for EC and abstraction readings from PUB during this trip. 	Draft report shared with PUB, MPWU and KAPII– comments to be provided- report to be finalised
1150	3.	CAIA scenarios results and key findings	Amandine to provide
-		The preliminary results and key findings of CAIA project	an informative
1300		 scenarios were presented by Amandine: Impact to the freshwater lens and the salinity at the trunk main under different abstraction rates and 	summary of recommendations

1300 - 1400	 climate scenarios to help identify a safe yield for an agreed climate condition Identification of galleries which contribute to increased gallery salinity: 1, 10 and 19 are critical followed by galleries number 5, 15, 17 and 22 Identification of rainfall indicie for recovery on the freshwater lens Impact of vegetation cover The review of the predictive scenarios under the current landuse show that: A safe yield of 1,600 kL/d was successfully modelled with 21 galleries out of 22, number 18 is permanently decommissioned, for a 30 year projection of salinity at the trunk main not exceeding 1,500 µS/cm including during a 3 year drought event. A worst case scenario demonstrates that a rate of 1,180 kL/d can be abstracted with salinities below 1,500 µS/cm at the trunk main with a 3 year drought happening within the first 5 years of projected historical rainfall Review of the predictive scenarios using a significant change in the landuse (clearing all trees and replacing them by grass), this will increase the net recharge by 20% to 25% and therefore increase the abstraction yield by 11% to 1,840 kL/d not exceeding 1,500 µS/cm, including during a 3 year drought event. Those results are coherent with previous estimates. Amandine presented that coconut trees can use up to 150L/tree/day and had estimated 1,520 trees from satellite imagery and landuse analysis suggesting that savings of up to 228 kL/d could be saved, which accords with the model results. Some concern was raised by the group over the removal of pandanus trees would be considered Ok but not pandanus. Impact of pandanus on the recharge and available abstraction should be considered. 	based on model predictive scenarios findings
1400	4. Discussion Session:	
- 1600	 Discussion around the conceptualization of sustainable yield for Bonriki with consideration to future demands, economic costs of alternative water, social and economic costs of vegetation removal, acceptable limits of salinity and impacts to the freshwater lens thickness both short and long term. Results provided indicated that 1600 kL/d can be sustained if a 3 year drought was to occur 12 years from 2015. The group discussed this risk option and felt that it would be 	

· · · · ·		1
	1660 kL/d day BUT to have a process for varying the	
	allowable abstraction based on triggers if extended drought	
	came sooner and started to impact on water quality. Further	
	that consideration be given to the triggers resulting in the	
	reduction of abstraction that would be required and the	
	timing of the reduced abstraction to minimize the potential	
	impact on the lens and keep the salinity of the water	
	abstracted below the 1,500 μ S/cm threshold.	
	 Discussion on using the model to develop a relationship 	
	between the monitoring bore salinity at specific locations	
	and the thickness of the freshwater lens.	
	• Amandine recommended that based on modelling results	
	that only 21 galleries can operate out of the 22 used for the	
	assessment. Further that the current research will provide a	
	recommendation on the individual pumping rate to set the	
	new pumps with a total yield of 1,600 KL/d fixed for the next	
	12 years.	
	• PUB, Itienang was interested in using the model to provide	
	advice on optimizing the abstraction whilst minimizing the	
	impact to the freshwater lens. In particular identify which	
	galleries will need to be switched off or abstraction rates to	
	maintain salinity levels leaving the treatment plant.	
	• Discussion around the identification of the triggers for	
	surveillance of the freshwater thickness, salinities at the	
	trunk main at the water treatment plant and rainfall	
	observations. KMS indicated that they can provide a rainfall	
	outlook bulletin, based on SCOPIC outlook for different time	
	period, 3, 6 and 12 months, up to 36 months, (albeit reduced	
	confidence). Need for identifying critical monitoring bores	
	which would provide insight to the expected freshwater lens	
	thickness below galleries.	
	 Amandine presented graphs which demonstrated that the 	
	model predicts that the impact to the freshwater lens and	
	the increase in salinity for the water leaving the treatment	
	plant is rapid. This suggests that the 3, 6, and 12 month	
	rainfall outlooks will be important in determining triggers to	
	reduce abstraction if the salinity increases during dry periods	
	is to be avoided.	
	 To be further discussed on meeting day 2. 	
	- To be further discussed on meeting day 2.	1

DAY 2 – Wednesday 28TH OCTOBER 2015

Time	Agenda	Action
1030 - 1100	 Introduction by the chair Maiango Enota to the meeting Summary and review of previous day agenda and discussions by Peter Reviewed the model results for different abstraction under different rainfall conditions: 	
	 Extended dry period will result in a rapid rise in salinity at galleries and in the trunk main. Good following rainfall will see an even more rapid response in reducing the salinity, at the top of the freshwater lens, to background levels. 	

	• The shorter the period between stresses e.g. droughts,	
	the quicker the abstracted water will reach a higher	
	salinity. Thinning of freshwater lens reduces its resilience	
	to provide the same quality of water for the same	
	abstracted volume.	
	 The concept of an abstraction range was considered 	
	based on the anticipated rainfall and antecedent	
	conditions. This range could vary from 900-1,800 kL/d	
	based on model results.	
	 Agreed that the SY would be restricted to 1,600 kL/d for 	
	a period of 12 years and that the focus should be on	
	providing guidance on when and by how much	
	abstraction may need to be varied in individual galleries	
	to reduce the impact to the freshwater lens and maintain	
	the salinity leaving the treatment plant to an acceptable	
	level.	
1100	3. Sustainable Yield (SY) concept for Bonriki	
-	 Agreed that assigning a fixed SY involves a certain 	
1200	amount of risk, as the model identifies that fixed	
	abstraction may range from 900-1,800 kL/d over a 12	
	year period, depending on rainfall climate experienced,	
	to avoid breaching salinity thresholds, and a thinning	
	trend in freshwater lens thickness.	
	 Discussion over the current reform for PUB which will 	
	focus on reversing the revenue losses from water supply	
	part of PUB. This will involve increasing the water	
	demand with improved water service and supply, and	
	resulting increased charge for service, which will have	
	potential impact on the Bonriki Water Reserve.	
	Consideration to alternate water sources is required to	
	meet the predicted increases in demand whereby the	
	model clearly identifies that the Bonriki freshwater lens is	
	unable to increase abstraction long term. Discussion	
	around the proposal to introduce a desalination plant to	
	provide the water demands of Bairiki and Betio	
	populations which will reduce the demand on the Bonriki	
	Water Reserve and thereby increase its potential to meet	
	the demands of a smaller population	
	 Discussion on the potential improvement in the assurtion of the Describe Victor Description (Mitsus) 	
	operation of the Bonriki Water Reserve. Whereby with	
	variable pumps provided from DFAT and MFAT funding	
	the abstraction rate can be adjusted based on the	
	performance of the gallery. Pumps are still waiting to be	
	installed.	
	 The current drought plan has no explicit guidance related to current drought plan has no explicit Water Pasarus the 	
	to varying abstraction at the Bonriki Water Reserve, the	
	committee would like to see some guidance provided	
	from the modelling on the types of responses and what	
	water conservation and water restriction may be	
	required, including altering the abstraction at individual	
	galleries using new adjustable pumps to meet the needs	
	of the community and the resource	
	Possible triggers:	
	 Measured salinities, daily readings at the 	
	treatment plant	
	 Communication and responsibility plan between 	

		agencies and KMS for outlook when salinity	
		reaches 1000 μ S/cm at the treatment plant	
1200 -	4.	 Status of South Tarawa Drought plan 2013 update – Draft status under CoSPPAC project 	
1230		 Major changes include: Name change from South Tarawa Drought Response Action Plan to <u>Drought Plan for South</u> <u>Tarawa</u> Averaging the percentiles for 3,4,5 years is considered incorrect, plan recommends 4 and 5 year percentiles for Bonriki 7-day average salinity of the mixed water from the Buota and Bonriki galleries exceeds a critical salinity value (currently set at 1,200 µS/cm) Annex C removed – identifying responses and responsibilities applicable in each alert 	
1230			
- 1330	Lunch		
1330	5.	Operation of Bonriki Water Reserve	Outputs from CAIA
-		 Amandine, based on model runs, proposed an assignment of variable obstraction with 0 collected at 	(recommendations for
1500		assignment of variable abstraction with 9 galleries at 90 m ³ /d, 7 galleries at 70 m ³ /d and 5 galleries at 60 m ³ /d	the Drought Plan for
		 During drought, identification of the galleries susceptible 	South Tarawa update)
		to increase salinity at the water treatment plant, number	 Agreement on
1500	6.	1, 10 and 19, then galleries number 5, 15, 17 and 22. Considerations for South Tarawa Drought Plan review -	abstraction yield
-	0.	indicies and assignment of abstraction	for the next 12 years and
1530		• KMS system for identifying and track rainfall percentiles	distributions over
		using selected indicie durations for triggering alert levels: • 40 percentiles: Watch	the galleries field.
		 25 percentiles: Watch 25 percentiles: Warning 	Recommendations
		• 10 percentiles: Drought Declaration	on an approach to vary abstraction
		• The analysis of rainfall ranking and the modelled salinity at the trunk main demonstrate that alert levels 1 and 2	and guidance on
		could be given using the 12 or 24 months charts and that	how this could be
		alert level 3 could be given using the 30 or 48 months	achievedGuidance from
		charts. The 30 months rankings could also be used for the recovery and dropping the alert. This assessment was	modelling results
		discussed briefly during the sessions and needs to be	from specific
		further explored in combination with the freshwater lens	scenarios
		thickness and salinities at the trunk and galleries prior to	 Additional figures on ranking of 6, 18
		 a recommendation for the draft Drought Plan. Consideration that a salinity of 1,000 μS/cm at the trunk 	and 36 month
		main, in combination with a review of other rainfall	rainfall totals for
		outlooks and monitoring bores may be a useful trigger	reporting on indices and
		for a level three alert.	triggers
			Email CAIA
	7.	Meeting closing remarks from the chair Maiango and Peter	website with a
			copy of the presentations
	L		presentations

ANNEX III – Drought Committee meeting presentations – attached pdf files

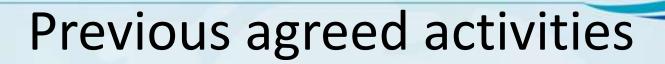
Climate and Abstraction Impacts on Atoll Environments

Presenter: Peter Sinclair and Amandine Bosserelle

Tuesday 27 October 2015

CLIMATE & ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS

ACP S&T PROGRAMME


SPC Secretariat of the Pacific Community

Introduction

- Objectives
 - Review the progress from the previous meeting in May 2015
 - Discuss model results and potential implications for existing sustainable yield and operation of Bonriki
 - Considerations for drought management plan
 - Future steps

Activity Number	Activity	Responsibility	Due date
8.2	Proposed modelling scenarios	Drought committee /SPC/ TWG	May 2015
8.5	Calibration of fixed flow meters	PUB/SPC	June 2015
8.2	Calibration of groundwater model	SPC/Flinders University	June/July 2015
8.2	Review of modelling scenarios/review of key inputs for DRAP with TWG	TWG	July 2015
8.2	Modelling of scenarios	SPC/ Flinders	August /Sept 2015
8.3 and 8.4	Recommendations for improvements in the tools and trigger parameters for inclusion in updated DRAP	SPC/Drought Committee	October 2015

CAIA Bonriki abstraction update

Groundwater abstraction validation exercise Flow meter testing, Buota & Bonriki Water Reserves, Tarawa, Republic of Kiribati (June 2015 field investigations)

Aminisitai Loco Draft Report August, 2015

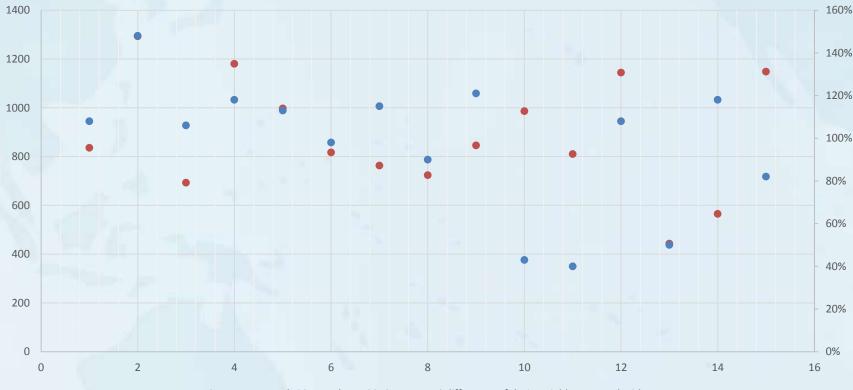
Purpose

• Reduce the uncertainty associated with the current fixed flow metered recorded abstraction rates.

Approach

- SPC to engage with PUB and KAPIII to design and undertake field testing on the fixed flow meters using ultrasonic flow meters UFM,
- Previous testing Oct 2014 and Dec 2014 suggest that the fixed flow meters are over reading y on average 16%
- Abstraction is a critical parameter to improving the confidence of the numerical model

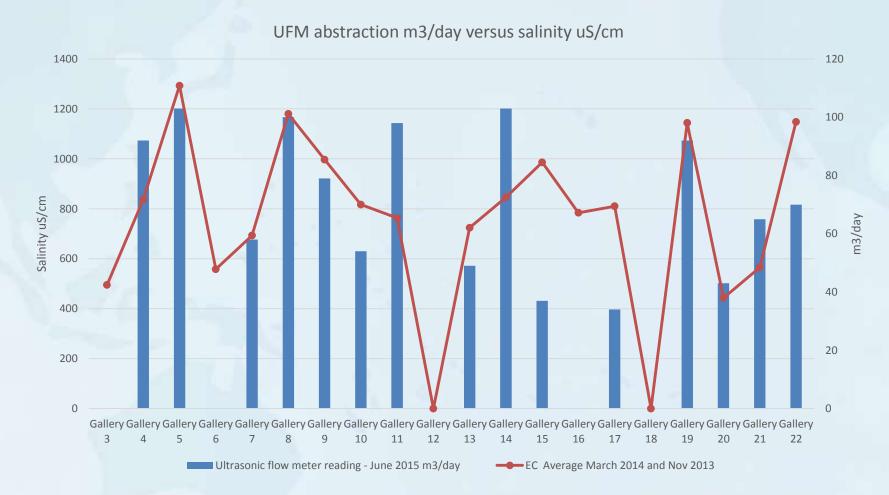
Fixed flow meter testing sites

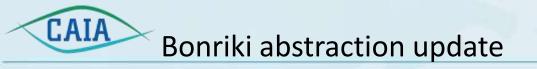


Assessment of gallery meters

Meter	Tested gallery design yield (Falkland, 2003) m ³ /day	Fixed flow meter reading - June 2015 m ³ /day _(new meter*)	Ultrasonic flow meter reading - June 2015 m ³ /day	% difference of FFM compared with UFM	% difference of design yield compared with UFM	EC Average March 2014 and Nov 2013	
Bonriki WTP	2000	1570	1284	18%	64%		
Buota main	340	254	232	9%	68%		
Gallery 1	85			No pump	NA		
Gallery 2	85			No pump	NA		
Gallery 3	85			NA retesting	NA	495	
Gallery 4	85	103*	92	10%	108%	836	
Gallery 5	70	127	103	19%	148%	1,293	
Gallery 6	55			NA	NA	558	
Gallery 7	55	86	58	32%	106%	693	
Gallery 8	85	128	100	22%	118%	1,180	
Gallery 9	70	99*	79	20%	113%	997	
Gallery 10	55	61	54	12%	98%	817	
Gallery 11	85	125	98	22%	115%	763	
Gallery 12	55			not pumping	NA		
Gallery 13	55	53*	49	6%	90%	724	
Gallery 14	85	135	103	24%	121%	846	
Gallery 15	85	41*	37	12%	43%	986	
Gallery 16	85			NA (slow pumping)	NA	784	
Gallery 17	85	39*	34	12%	40%	810	
Gallery 18	85			No pump	NA		
Gallery 19	85	98	92	7%	108%	1,144	
Gallery 20	85	67	43	37%	50%	443	
Gallery 21	55	112	65	42%	118%	565	
Gallery 22	85	110	70	36%	82%	1,148	

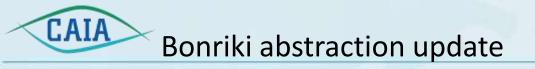
Comparison of EC and abstraction versus design yield

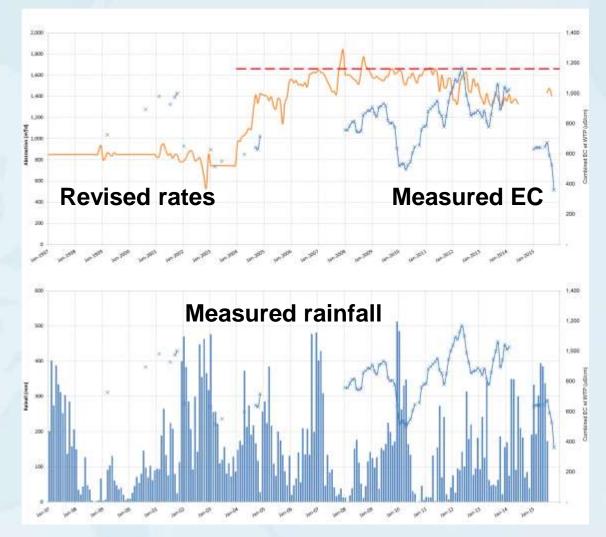

% difference in design yield and averaged EC



EC Average March 2014 and Nov 2013

• % difference of design yield compared with UFM


Comparison of EC and abstraction versus design yield



Measured versus revised groundwater abstraction rates

Measured EC and rainfall versus revised groundwater abstraction rates – Bonriki Only

Fixed flow meter testing findings

- Meters at the Bonriki and Buota main transmission lines are overestimating abstraction by 18% and 9%, respectively.
- Fifteen (15) of the twenty-two (22) gallery flow meters at Bonriki, operating in June 2015 were tested with UFM. All fixed meters registered over reading of 6 – 42% above the actual flow, with more than 85% of meters registering more than 10% error.
- Incorrect installation resulting in turbulence is causing the over reading errors in the meters. Even new meters demonstrate incorrect readings
- Overall system running at 64% of designed abstraction in June 2015.
- 9 galleries abstracting greater than design rate, up to 148%, on average 17% more than design rate
- 6 galleries abstracting less than design rate, up to 40%, and on average 58% of design rate

Fixed flow meter testing recommendations

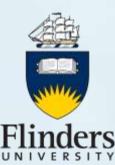
- Redesign flow meter setup for galleries and at the main transmission lines to ensure that meters are installed correctly. All galleries and main transmission lines will require new setup of flow meters
- Replacement of older flow meters, meters on main transmission lines, are a matter of urgency
- Pumping from each gallery should be reviewed with regard to actual abstraction, designed abstraction and the salinity at the gallery. Consider adjusting abstraction to design rate if salinity permits.
- As the 6 galleries become operational, additional testing should be carried out to determine abstraction rates.

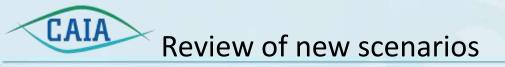
Review of new scenarios

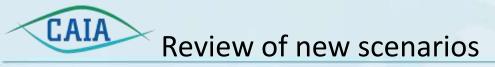
Presenter: Peter Sinclair and Amandine Bosserelle

Tuesday 27 October 2015

CLIMATE & ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS



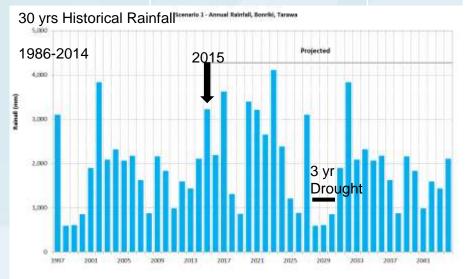




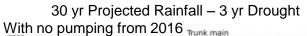
EUROPEAN UNION

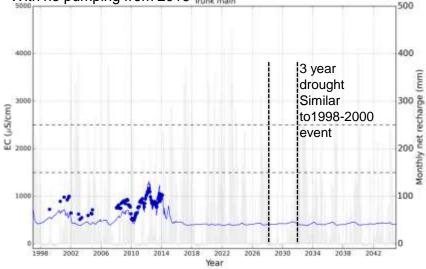
ACP S&T PROGRAMME

- The **impact of vegetation cover** on recharge and the groundwater storage over time to provide technical advice for future planning
- The impact to the freshwater lens and the salinity at the trunk main under different abstraction rates and climate scenarios to help identify a sustainable yield for an agreed climate condition
- The identification of galleries which contribute to increased gallery salinity under different abstraction rates and identification of an optimal abstraction rate for each gallery under different climate conditions for the proposed sustainable yield
- Identifying an improved indicie for rainfall to determine impact and recovery on the freshwater lens in Bonriki using the rainfall decile methodology



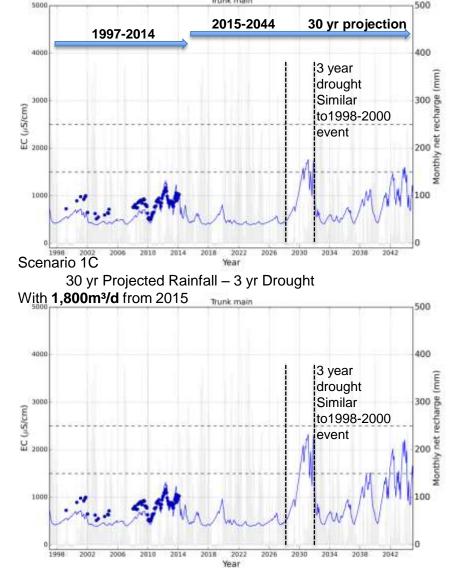
		Cimulation 1					Circu d		C		Circulations		Cimulation E		
Model input parameters		Simulation 1					Simulation 2 Base Case - 6				Simulation 4		Simulation 5		
									Base Case - 3		Worst Case - 3				
		Base Case - 3 year drought - Climate				year drought - Climate and			ought -	-	ought -	year drought -			
		and Abstraction Scenarios			Vegetation and					Climate and					
						-		Abstraction		Abstraction		Abstraction		Abstraction	
							Scenarios		Scenarios		Scenarios		Scenarios		
		1A	1B	1C	1D	1E	2A	2B	3A	3B	4A	4B	5A	5B	
Climate	Historical (30 yrs with a 3 year drought)	۷	٧	٧	v	v			٧	v					
	Historical (30 yrs with a 6 year drought)						٧	v							
	Historical (20 yrs repeat with a 3 year drought)										٧	٧			
	Historical (20 yrs repeat with a 5 year drought)												٧	٧	
Vegetation	Current landuse – (10 to 20% trees)	۷	٧	٧	٧	٧	v	٧			٧	٧	٧	٧	
	Cleared (grasses only – no trees)								٧	v					
Abstraction	Current abstraction distribution and projected design rate (1,660m ³ /d 21 galleries)	٧					٧		v		٧		٧		
	1,800m ³ /d projected design rate (21 galleries)			٧											
	No Abstraction after December 2015		٧												
	Uniform abstraction distribution (~79m ³ /d per galleries - 21)					٧									
	Optimised abstraction distribution (based on iterations – 3 different initial rates)				٧			٧		٧		۷		v	



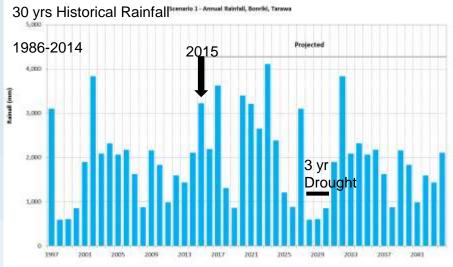


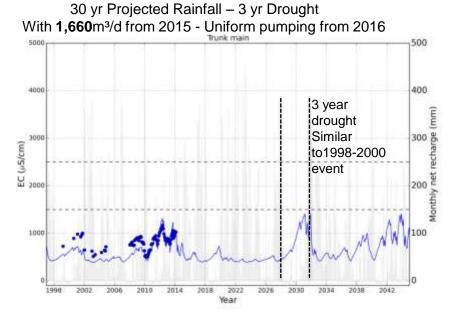
Base Case - 3 year drought - Climate and Abstraction Scenarios

Scenario 1B

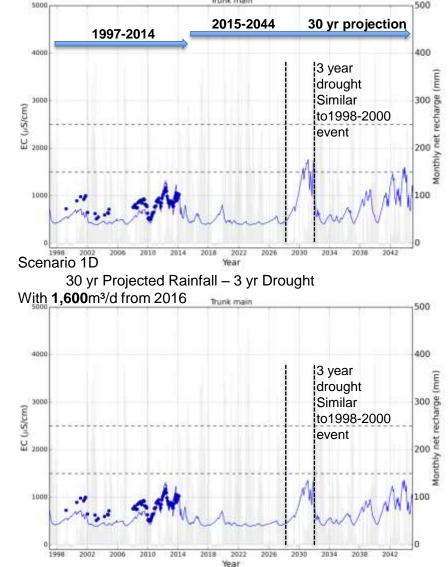


Scenario 1A

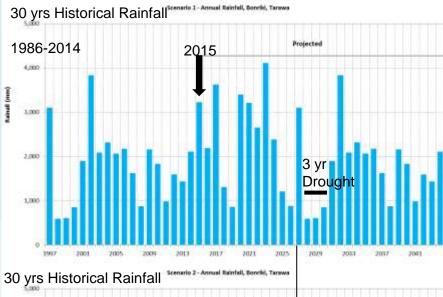

With 1,660m³/d from 2015

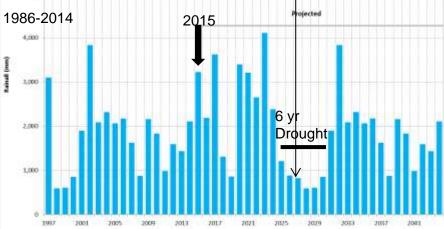


Base Case - 3 year drought - Climate and Abstraction Scenarios

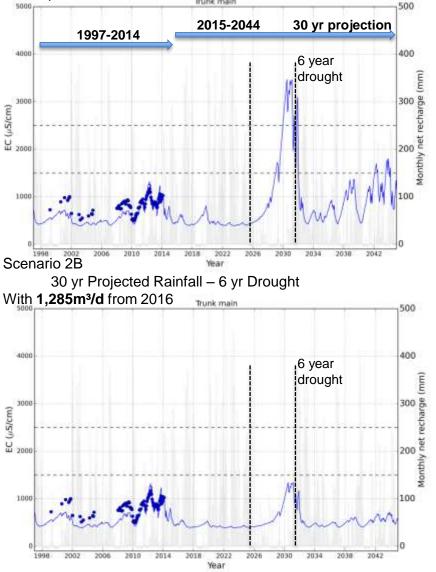

Scenario 1E

Scenario 1A

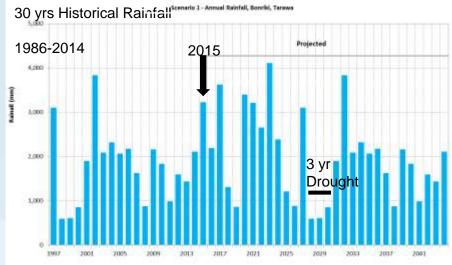

With 1,660m³/d from 2015

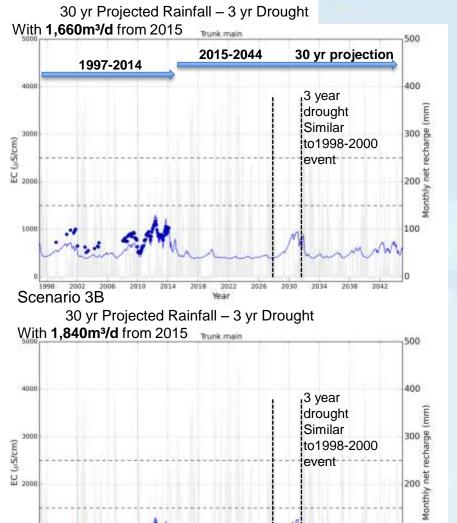


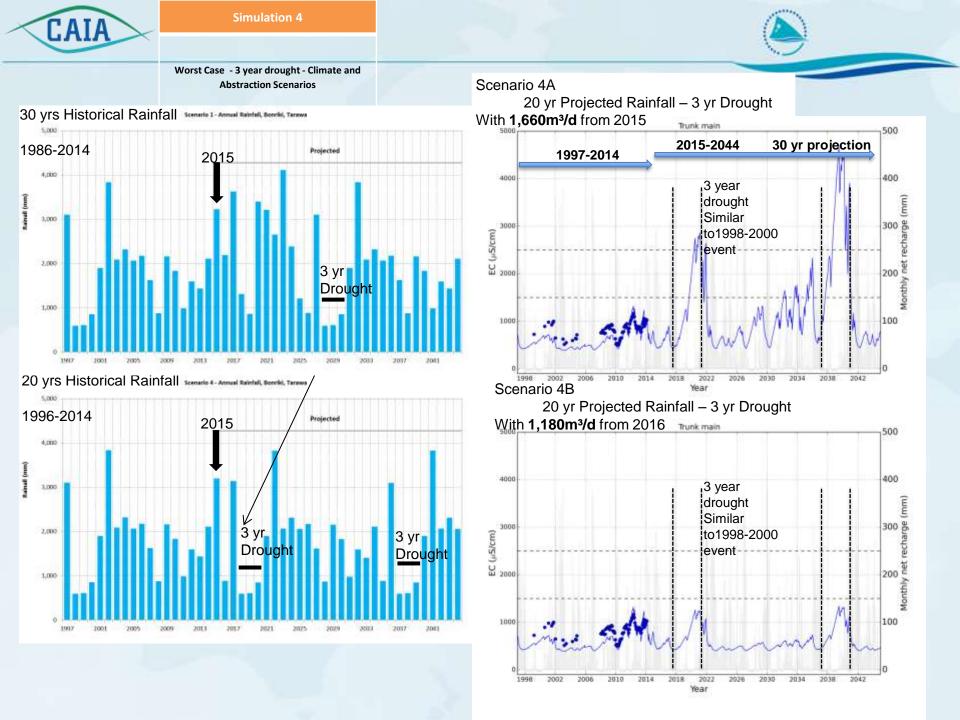
Base Case - 6 year drought - Climate and Abstraction Scenarios



Scenario 2A

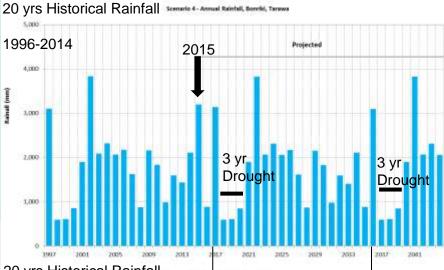

With 1,660m³/d from 2015

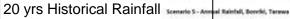

Base Case - 3 year drought - Vegetation and Abstraction Scenarios

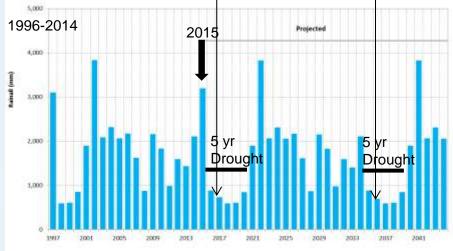


Scenario 3A

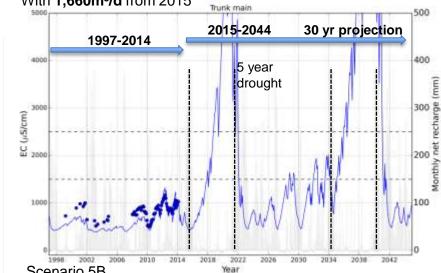
Year

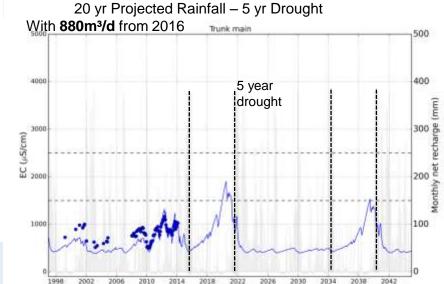




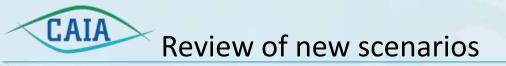


Worst Case - 5 year drought - Climate and Abstraction Scenarios





Scenario 5A



Scenario 5B

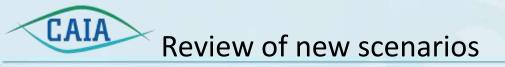
Year

2014 2018 2022 2026 2030 2034

Year

2010

2038 2042



		Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5	
Model input parameters		Base Case - 3 year drought - Climate and Abstraction Scenarios	Base Case - 6 year drought - Climate and Abstraction Scenarios	Base Case - 3 year drought - Vegetation and Abstraction Scenarios	Worst Case - 3 year drought - Climate and Abstraction Scenarios	Worst Case - 5 year drought - Climate and Abstraction Scenarios	
	Predicted safe abstraction yield and predicted EC at the	1660 kL/d (exceeds 1500µS/cm for second half of drought)	1660 kL/d (exceeds 2500μS/cm for second half of drought)	1840 kL/d (remains < 1500μS/cm)	1660 kL/d (exceeds 2500μS/cm for second half of drought)	1660 kL/d (exceed 5000μS/cm for second half of drought)	
Results	trunk main remains below 1,500 μS/cm	1600 kL/d (remains < 1500μS/cm)	1285 kL/d (remains < 1500µS/cm)		1180 kL/d (remains < 1500μS/cm)	880 kL/d (just reaches 1500µS/c	
Nesults	(adopted sustainability criterion) for:Historical variations	projected 12 years of historical rainfall followed by a 3	historical rainfall	projected 12 years of historical rainfall followed by a 3 year	3 year drought within the first 5 years of projected	5 year drought within the first 5 years of projected	
	in rainfall and drought	year drought	drought	drought Projected landuse	historical rainfall	historical rainfall	
	Landuse conditions	landuse conditions	under current landuse conditions	conditions (no trees)		landuse condition	
	3200	Trunk main	500 <u>Trur</u> 5000		runk main	500	
	1660 kL/d		400 4000	880 kL/d		400	
		1 1 1 1 1	(Emilia)			(iii)	
	3000 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	[][an (m)			300 B	
	С. 22 2001	E of	200 ÅE		N	200 Jack August	
		AM	100 uses	" all	A A	<u>5</u> 	
	incin W TW	WAA A .	VW ~	inen win	hann	L.	

2018

2010 2014 2018 2022 2026 2030 2034 2038 2042

Year

Identification of galleries which contribute to increased gallery salinity

Out of 21 galleries (excluding 18), historical minimum EC values range from 300 to 500 μ S/cm, while maximum EC values exceeds 1,000 μ S/cm for 13 galleries and exceeds 1,500 μ S/cm for 3 galleries (1, 10 and 19)

Modelled Abstraction Yield

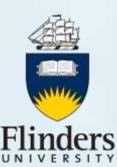
Bonriki Pump Station (PS)	Design yield (m³/d) — Falkland (2003)	Measured flow rate	Percentage discrepancy (Fixed flow meter vs UFM)	Revised flow rate - Mean 2013 (m³/d) – Bonriki Only Mean 1,363 m³/d	% Diff Revised/Design	$1660m^{2}/d$	Uniform 1660m³/d	Base Case 1600m³/d 3 yr drought		3 yr	Worst Case 970m³/d 5 yr drought
PS1	85	not working	No Pump (2015)			90	79	70	55	50	<mark>40</mark>
PS2	85	116	No Pump (2015)			90	79	90	75	70	60
PS3	85	153	FM not working	144	41%	90	79	90	75	70	60
PS4	85	91	0.105	81	-5%	90	79	90	75	70	60
PS5	70	102	0.186	83	16%	74	79	90	75	70	
PS6	55	not working	FM not working			57	79	60	45	40	
PS7	55	81	0.321	55	0%	57	79	70	55	50	40
PS8	85		0.217	88	3%	90	79				
PS9	70	104	0.201	. 83	16%	74	79	90	75	70	
PS10	55	62	0.12	. 54	-2%	57	79	60	45	40	<mark>30</mark>
PS11	85	128	0.216	101	. 16%	90			75	70	
PS12	55	67	FM not working	58	5%	57	79	60	45	40	
PS13	55	48	0.065	45	-22%	57	79	60	45	40	
PS14	85	114	0.236	87	2%	90	79	90	75	70	
PS15	85	118	0.122	. 104	. 18%	90	79	90	75	70	
PS16	85	68	FM not working	59	-44%	90	79	70	55	50	-
PS17	85	40	0.118	36	-136%	90	79	60	45	40	30
PS18	85	. 80	No Pump (2015)	- 71	-20%	0	e) G	0 0	e e	, Ф
PS19	85	69	0.069	64	-33%	90	79	70	55	50	<mark>40</mark>
PS20	85	69	0.37	43	-98%	90	79	70	55	50	40
PS21	55	107	0.421	. 62	11%	57	79	70	55	50	40
PS22	85	109	0.36	69	-23%	90	79	70	55	50	40

Climate and Abstraction Impacts on Atoll Environments

Presenter: Peter Sinclair and Amandine Bosserelle

Wednesday 28 October 2015

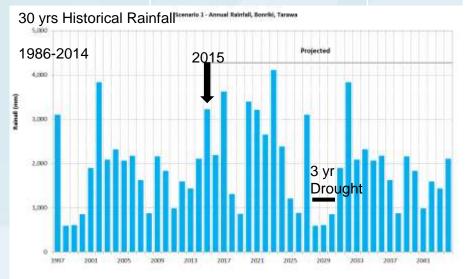
CLIMATE & ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS



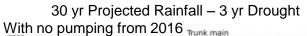
Secretariat of the Pacific Community

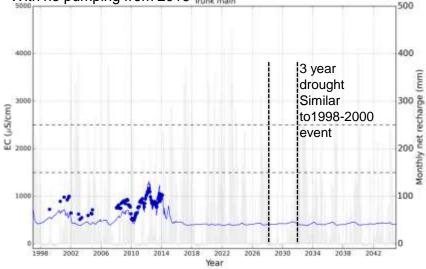
EUROPEAN UNION

ACP S&T PROGRAMME


Recap

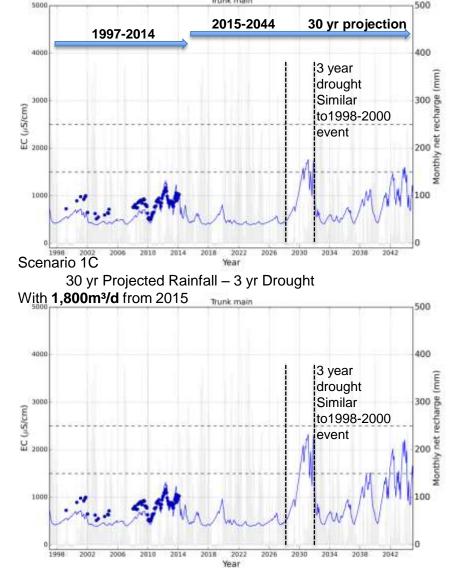
- Reviewed the model results for different abstraction under different rainfall conditions
- Common to all includes the following
 - Extended dry period will result in a rapid rise in salinity at galleries and in the trunk main
 - Good following rainfall will see an even more rapid response in reducing the salinity, at the top of the freshwater lens, to background levels
 - The shorter the period between stresses eg droughts, the quicker the abstracted water will reach a higher salinity.
 Thinning of freshwater lens reduces its resilience to provide the same quality of water for the same abstracted volume



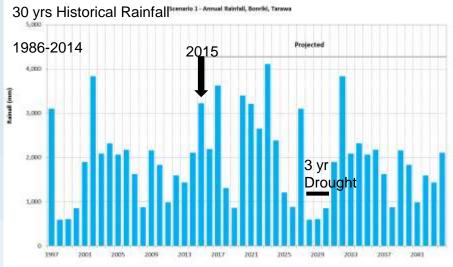


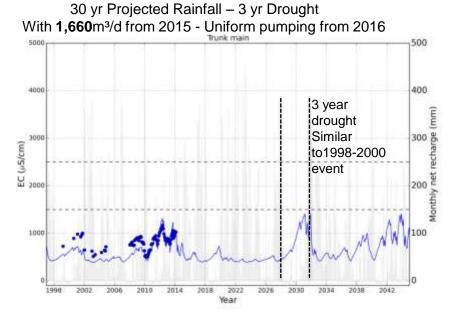
Base Case - 3 year drought - Climate and Abstraction Scenarios

Scenario 1B

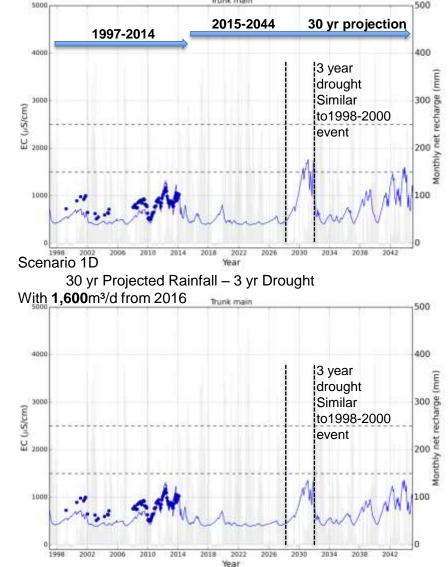


Scenario 1A

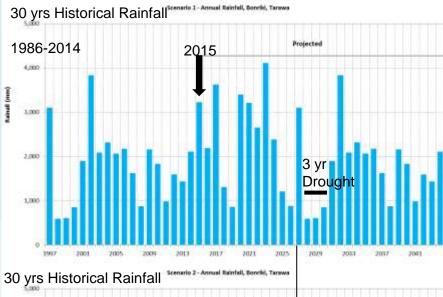

With 1,660m³/d from 2015

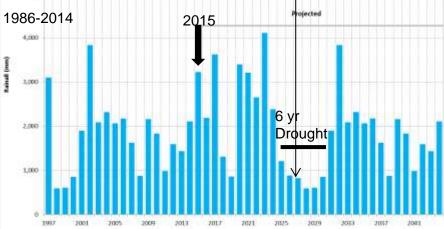


Base Case - 3 year drought - Climate and Abstraction Scenarios

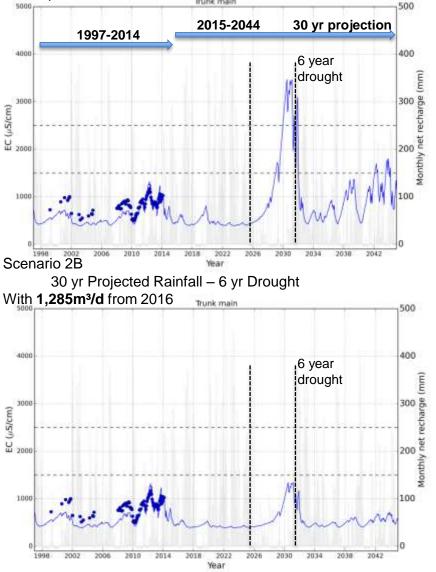

Scenario 1E

Scenario 1A

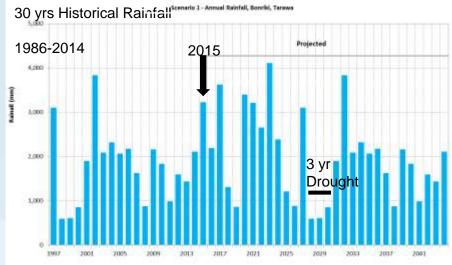

With 1,660m³/d from 2015

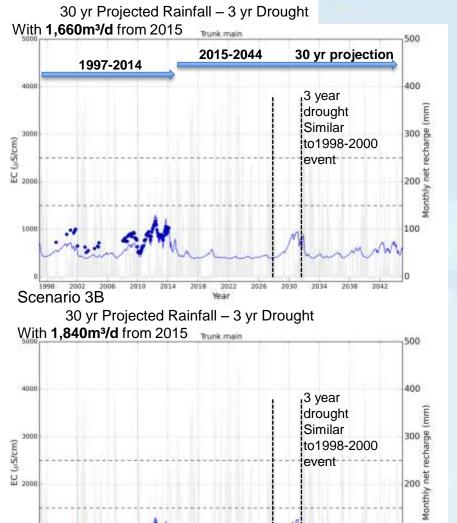


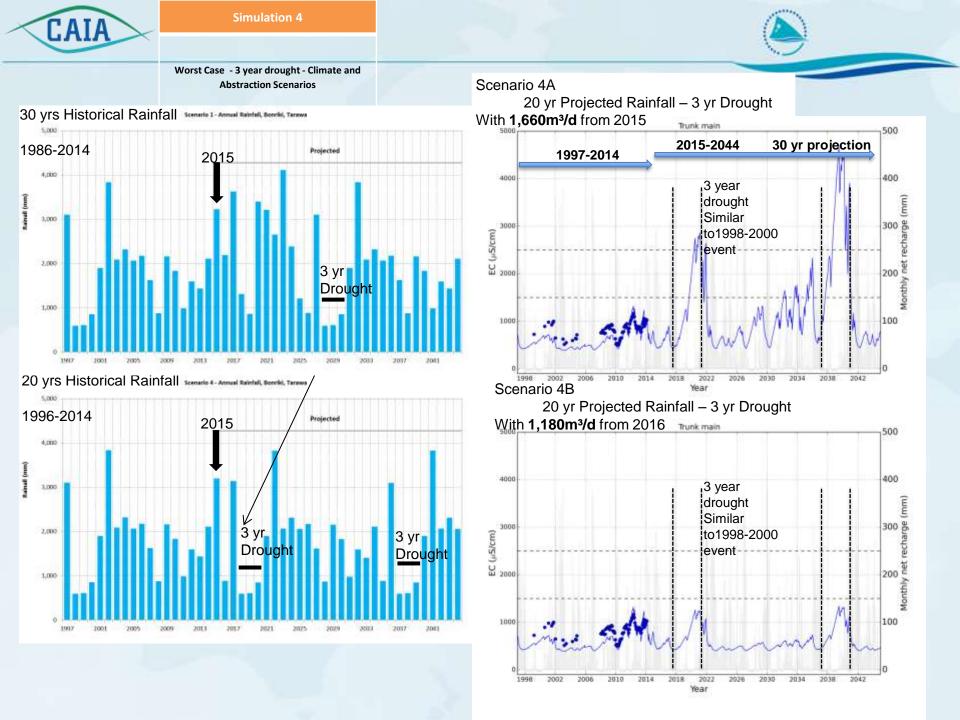
Base Case - 6 year drought - Climate and Abstraction Scenarios



Scenario 2A

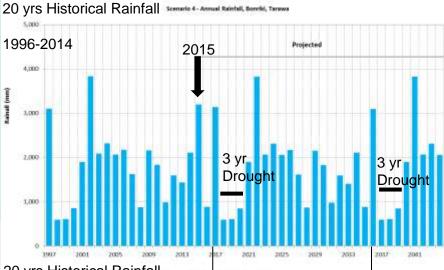

With 1,660m³/d from 2015

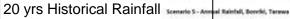

Base Case - 3 year drought - Vegetation and Abstraction Scenarios

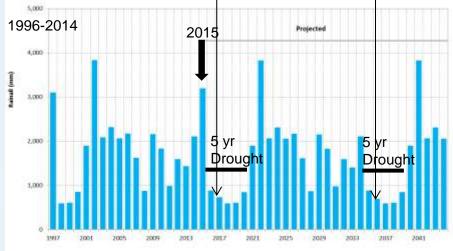


Scenario 3A

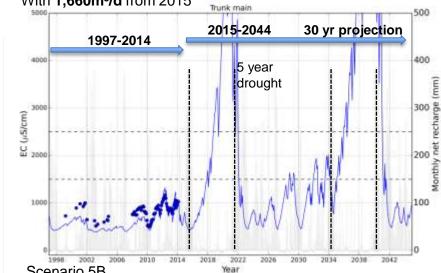
Year

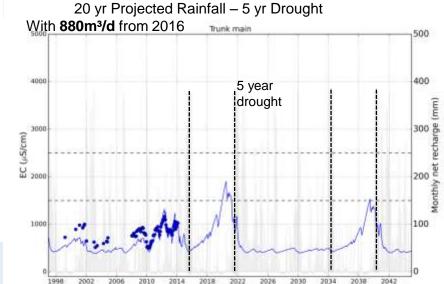






Worst Case - 5 year drought - Climate and Abstraction Scenarios





Scenario 5A

Scenario 5B

Year

Recap

- Modelling is useful to indicate the impact of abstraction over a 30 year period, different abstraction impacts can be reviewed, providing insight into the effect of assigning a sustainable yield
- Recognise that the concept of sustainable yield is dependent on the anticipated rainfall and antecedent conditions
- Model suggests that abstraction range from 880-1840m³/day depending on rainfall volume and timing, and landuse, without breaching 1,500µS/cm

Recap

- Model indicates that the clearing of trees and replacing vegetation with grass could provide up to 11% increase in available abstraction
- All galleries are not the same in providing the same quality of water for the volume abstracted.
 - Gallery 18 should not be used.
 - Marginal galleries include 1,5, 10,15,17,19,22 would be one of the first to be considered to have reduced pumping

Sustainable Yield concept for Bonriki

- Assign a volume of water which can be abstracted over a defined period to meet expected demands without resulting in unwanted impacts
- Time frame: SY would be in place for 12 years, and then reviewed
- Constraints salinity should not breach 1,500µS/cm under predicted conditions
- Available abstraction ability to vary the abstraction by a fixed amount to accommodate variations in demand and climate which can impact on the acceptable limits of salinity

Recap

- SY is defined by considering
 - Acceptable risks, (rainfall scenarios)
 - Acceptable limits of salinity (how much can these vary over short periods)
 - Demands from population pressure, and costs of alternatives
- Consider focussing on our ability to vary abstraction based on the impact to the freshwater lens. Build guidance and confidence around how to vary abstraction above or below a defined sustainable yield long term (12 years)

Information sources and possible triggers

Climate

• Forecasts from meteorology, 3,6,12 months outlooks for rainfall, SCOPIC indicies and percentiles which relate back to either increasing salinity or changing freshwater lens thickness (monthly)

– Salinity

• Salinity as measured at the trunk main (daily)? and at the individual galleries (monthly)

- Freshwater lens thickness

- Relationship between freshwater thinning under the galleries but measured at the monitoring bores
- Rate of change of thinning or thickening of FWL (quarterly)
- Identify most critical monitoring bores

Sustainable yield for Bonriki water reserve

- Discussion
 - Does the modelling provide sufficient evidence to alter the current 1660m³/day SY from 2003 to 1600m³/day
 - Is more information needed? If so what?
 - What pressures would apply to result in considering the SY to be altered?
 - Options for increasing SY
 - Vegatation clearing
 - Additional galleries

Status of South Tarawa Drought plan

Advice from Mike Foon NDMO –OB on the status of the DRAP 30/7/2015

- The DRAP was originally tabled at Cabinet and then the Secretaries meeting.
- DRAP is a functional plan under National Disaster response Management Plan NDRMP, and therefore under NDRMP does not require Cabinet approval. It is **approved at the NDC level and can be altered as required**.
- The Secretaries meeting is acting as the National Disaster Committee, NDC during peace times and can table DRM items for approval. (NDC and Secretaries Meeting membership is the same)
- The recommendation to get MPWU to chair Drought Committee during peace times (non critical periods) is from OB. Rationale is that OB wants sectors to take lead in respective hazards related to their sectors instead of OB having to chair so many committees

Drought Plan South Tarawa update

- Draft updated under CoSPPAC project 2013, to be accepted by NDC.
- Major changes include
 - Name change from South Tarawa Drought Response Action
 Plan to Drought Plan for South Tarawa
 - Averaging the percentiles for 3,4,5 years is considered incorrect, recommend 4 and 5 year percentiles for Bonriki
 - 7-day average salinity of the mixed water from the Buota and Bonriki galleries exceeds a critical salinity value (currently set at 1,200 μS/cm)
 - Annex C removed identifying responses and responsibilities applicable in each alert

Current information sources in drought plan

• KMS

- Use SCOPIC to identify and track rainfall percentiles for selected indicie durations, 3,6, 12 months and 4,5 years
- 10 and 40 percentiles for triggering alert levels

• WEU

- 3 monthly monitoring of monitoring bores for salinity to determine freshwater thickness, increase frequency of monitoring bores may be required at times
- PUB
 - Volume of water abstracted, galleries and overall trunk main
 - Salinity of individual galleries and salinity of the mixed water to South Tarawa

Drought Plan

- South Tarawa Drought plan currently provides limited guidance on the response actions for each alert level,
- Drought plan does not explicitly provide for varying abstraction at the Bonriki water reserve
- Drought plan considers triggers for alert levels and declaration of drought identifying information which could be used to inform community of status of climate outlook and water resources
- What would you like to see?

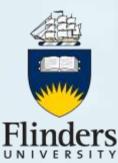
SECRETARIAT OF THE PACIFIC COMMUNITY SECRÉTARIAT GÉNÉRAL DE LA COMMUNAUTÉ DU PACIFIQUE

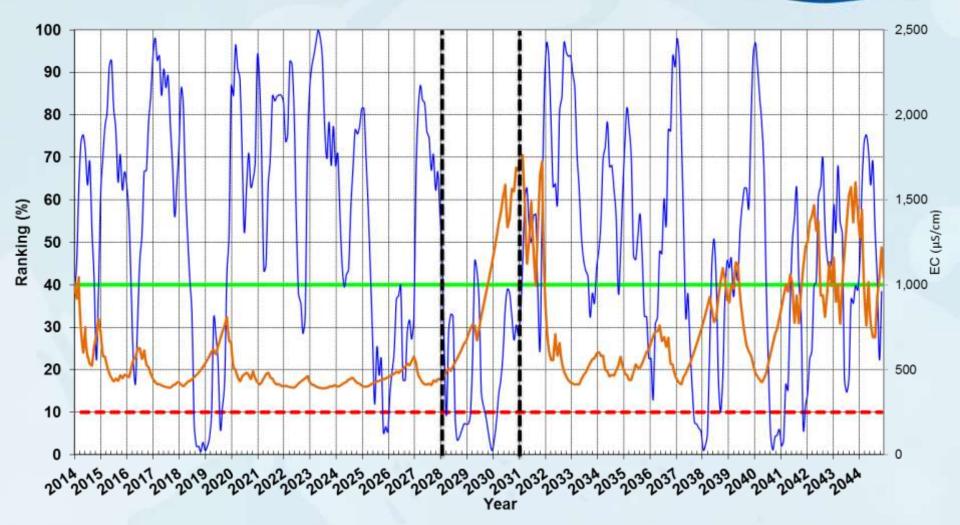
Operation of Bonriki Water Reserve – Monitoring and Abstraction Optimisation Insights

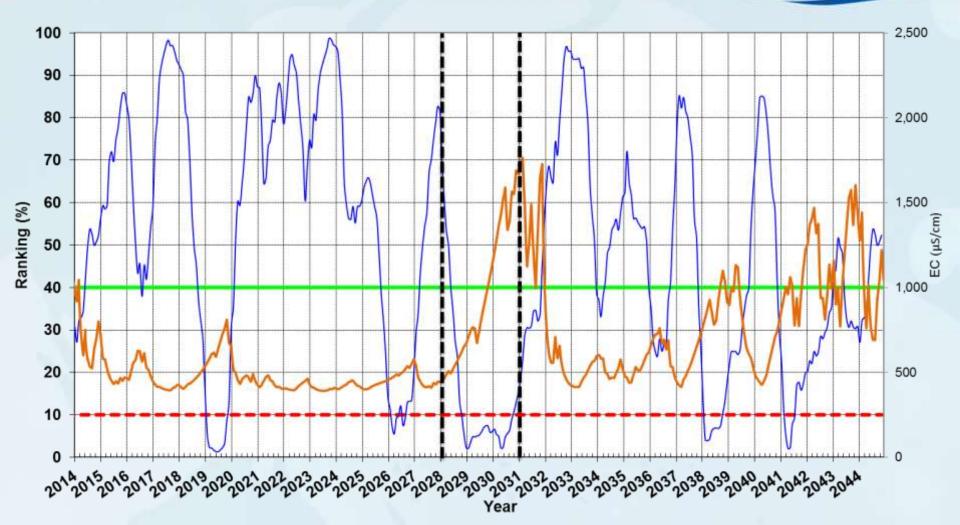
Presenter: Peter Sinclair and Amandine Bosserelle

Tuesday 27 October 2015

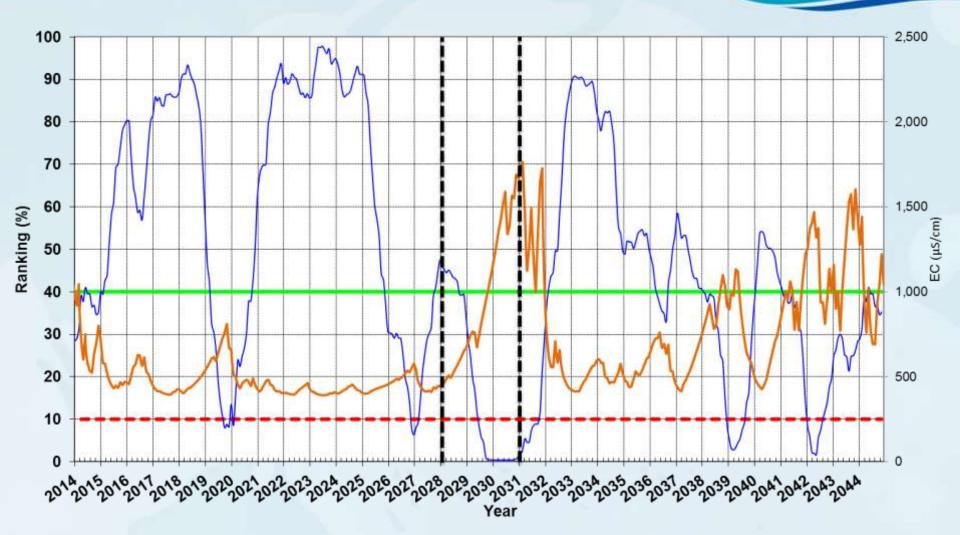
CLIMATE & ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS



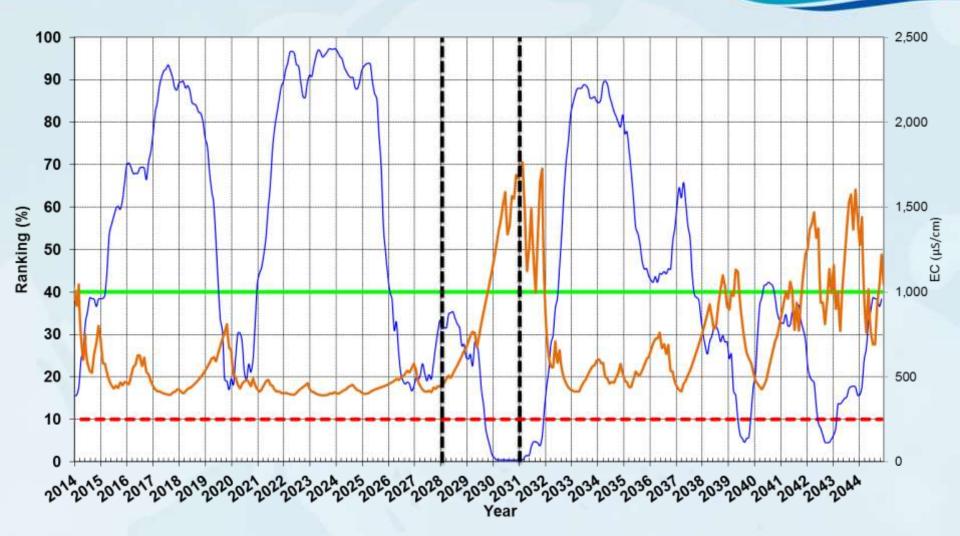

ACP S&T PROGRAMME



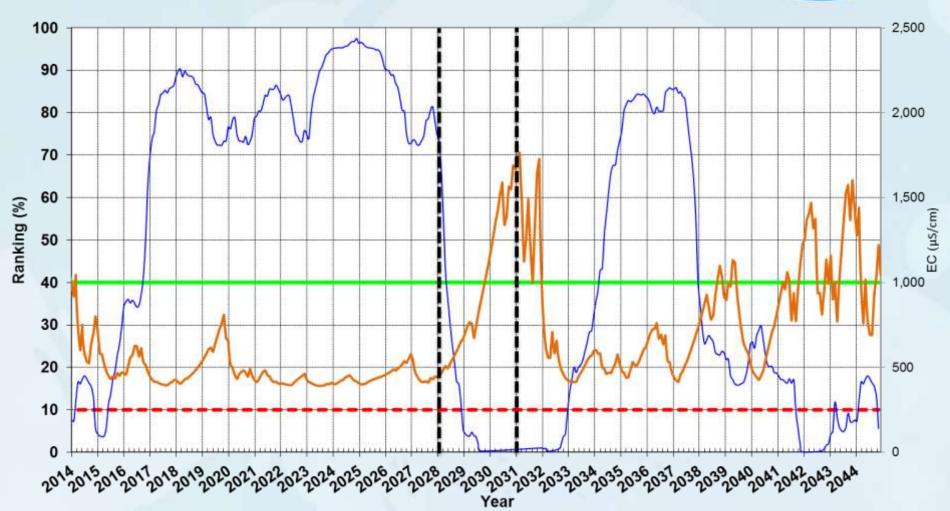
Ranking of 3 Month Rainfall Totals, Betio, Tarawa



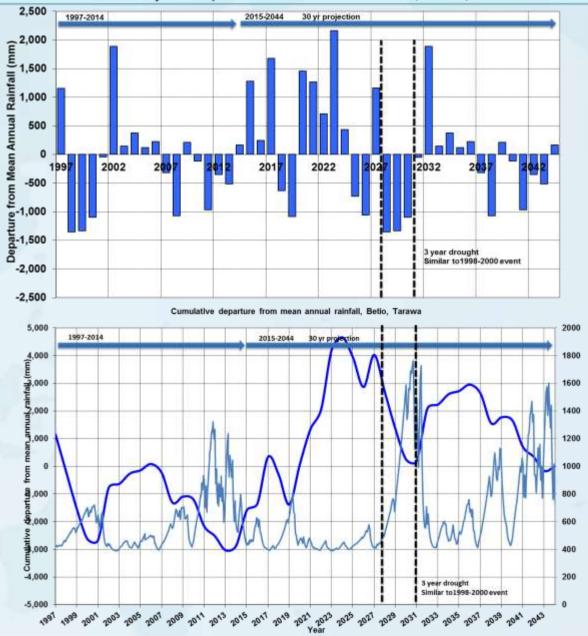
Ranking of 12 Month Rainfall Totals, Betio, Tarawa



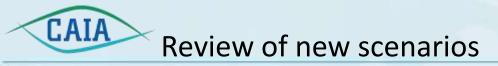
Ranking of 24 Month Rainfall Totals, Betio, Tarawa


Ranking of 30 Month Rainfall Totals, Betio, Tarawa

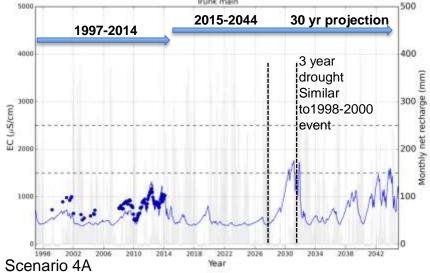
Ranking of 48 Month Rainfall Totals, Betio, Tarawa

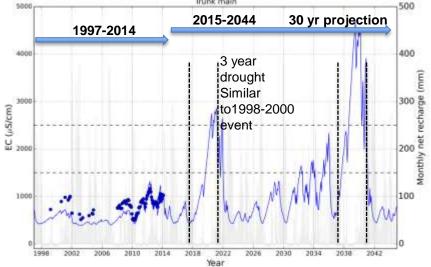


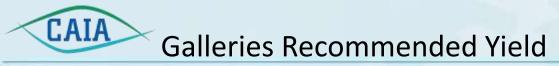
Ranking of 60 Month Rainfall Totals, Betio, Tarawa



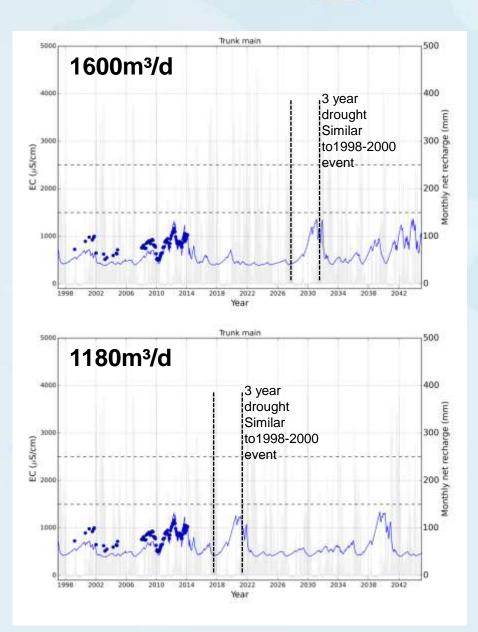
Projected Departure from Mean Annual Rainfall, Bonriki, Tarawa


		Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5
Model input parameters		Base Case - 3 year drought - Climate and Abstraction Scenarios	Base Case - 6 year drought - Climate and Abstraction Scenarios	Base Case - 3 year drought - Vegetation and Abstraction Scenarios	Worst Case - 3 year drought - Climate and Abstraction Scenarios	Worst Case - 5 year drought - Climate and Abstraction Scenarios
	Predicted abstraction yield safe for the following conditions:	1600 to 1660 kL/d 1800kL/d (exceeds 1500μS/cm at the end of the 1 st drought year)	1660 kL/d (exceeds 2500μS/cm for second half of drought) 1285 kL/d (remains < 1500μS/cm)	1840 kL/d (remains < 1500μS/cm)	1660 kL/d (exceeds 2500μS/cm for second half of drought) 1180 kL/d (remains < 1500μS/cm)	1660 kL/d (exceeds 5000μS/cm for second half of drought) 880 kL/d (just reaches 1500μS/cm)
	variation in rainfall and droughtlanduse conditions	projected 12 years of historical rainfall followed by a 3 year drought	projected 9 years of historical rainfall followed by a 6 year drought	projected 12 years of historical rainfall followed by a 3 year drought	3 year drought within the first 5 years of projected historical rainfall	5 year drought within the first 5 years of projected historical rainfall
		under current landuse conditions	under current landuse conditions	Projected landuse conditions (no trees)	under current landuse conditions	under current landuse conditions
Adopted sustainability criterion	 Predicted EC at the trunk main remains below 1,500 µS/cm The freshwater lens thickness below the reference galleries remains greater than 5m Changes in freshwater lens thickness compare to simulated natural conditions doesn't exceed XX% at reference points (central monitoring locations where the lens is the thickest) 	• xx • xx • xx				


	1660m³/d 9 yrs historical climate + 3 yr drought	1660m³⁄d Early 3 yr drought + 9 yrs historical climate	
Time from 1 st month of drought to exceed 1000µS/cm	22 months	11 months	
Time from 1 st month of drought to exceed 1500µS/cm	29 months (7 months after exceeding 1000µS/cm)	18 months (7 months after exceeding 1000μS/cm)	
Time from 1 st month of drought to exceed 2500µS/cm	-	28 months (10 months after exceeding 1000μS/cm)	


Scenario 1A

Bonriki Pump Station (PS)	Base Case 1600m³/d 3 yr drought
PS1	70
PS2	90
PS3	90
PS4	90
PS5	90
PS6	60
PS7	70
PS8	90
PS9	90
PS10	60
PS11	90
PS12	60
PS13	60
PS14	90
PS15	90
PS16	70
PS17	60
PS18	Ð
PS19	70
PS20	70
PS21	70
PS22	70


Identification of galleries which contribute to increased gallery salinity

9 galleries at 90 m³/d 7 galleries at 70 m³/d 5 galleries at 60 m³/d Out of 21 galleries (excluding 18), historical minimum EC values range from 300 to 500 μ S/cm, while maximum EC values exceeds 1,000 μ S/cm for 13 galleries and exceeds 1,500 μ S/cm for 3 galleries (1, 10 and 19)

Galleries Recommended Yield

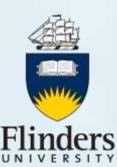
Bonriki Pump Station (PS)	Base Case 1600m³/d 3 yr drought				Early Drought Case 1180m³/d 3 yr drought
PS1	70				50
PS2	90	90	90	90	70
PS3	90	90	90	90	70
PS4	90	90	90	90	70
PS5	90	90	70		70
PS6	60	60	60	60	40
PS7	70	70	70	70	50
PS8	90	90	90	90	70
PS9	90	90	90	90	70
PS10	60				40
PS11	90	90	90	90	70
PS12	60	60	60	60	40
PS13	60	60	60	60	40
PS14	90	90	90	90	70
PS15	90	90	70		70
PS16	70	70	70	70	50
PS17	60	60	40		40
PS18					
PS19	70				50
PS20	70	70	70	70	50
PS21	70	70	70	70	50
PS22	70	70	50		50
Total Bonriki	1600	1400	1320	1090	1180

Climate and Abstraction Impacts on Atoll Environments

Presenter: Peter Sinclair and Amandine Bosserelle

Wednesday 28 October 2015

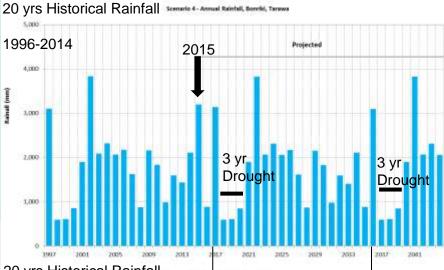
CLIMATE & ABSTRACTION IMPACTS ON ATOLL ENVIRONMENTS

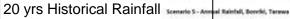


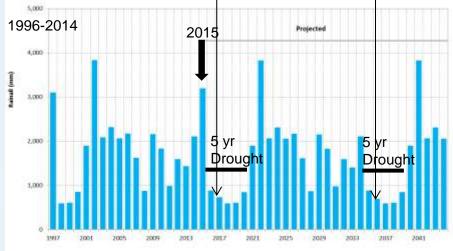
Secretariat of the Pacific Community

EUROPEAN UNION

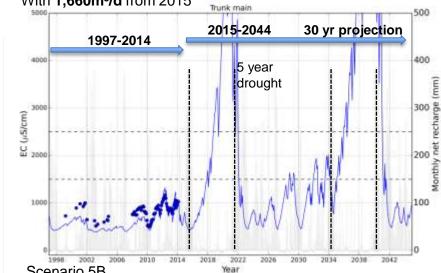
ACP S&T PROGRAMME

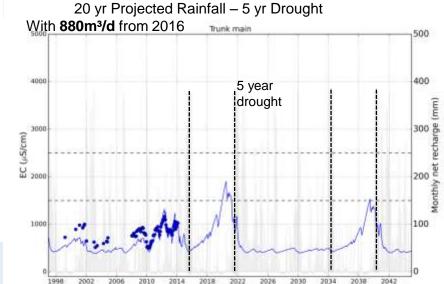

Considerations for South Tarawa Drought Plan


- Indicies and assignment of abstraction
 - Current draft recommends
 - Alert level 1 <40 percentile rainfall for 3months duration – (reflect rainfall tanks)
 - Alert level 2 < 40 percentile rainfall for 5 year duration and/or impact to lens from salinity measurements at galleries of monitoring boreholes
 - Alert level 3 <10 percentile rainfall for 5 year duration and or salinity at trunk main exceeds critical value 1,200uS/cm over 7 day average
 - 5 year duration based on calculated residence time for Bonriki water source



Worst Case - 5 year drought - Climate and Abstraction Scenarios





Scenario 5A

Scenario 5B

Year

Indicies

- Deterioration of salinity in gallery is a slower response than the recovery in salinity of gallery after rainfall,
- consider different indicies to better reflect the onground situation- avoid maintaining restrictions during wet periods, recognising that thickening of the water lens will take additional time

Assignment of abstraction

- Being able to assign abstraction for a defined period to respond to a change in salinity, rainfall, and freshwater lens status
- Consideration of rules that provide guidance
 - How much to vary from the sustainable yield in a given year, or a given day?
 - When it can vary, and for how long?
 - Mechanism to vary best to be incorporated in to a drought plan or separate policy, if seperate who would implement?

Next steps

- Additional information
 - What expectations from govt for this work, where can it be best utilised
- Outputs from CAIA
 - Agreement on sustainable yield
 - Recommendations on an approach to vary abstraction and guidance on how this could be achieved
 - Guidance from modelling results from specific scenarios

Next steps

- Linkages to other projects
 - CoSPPAC,
 - NZ water security
 - Others?